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Abstract. A trial wave function Ψ(1, 2, . . . , N) of an N electron system can always be written
as the product of an antisymmetric Fermion factor F{zij} =

∏
i<j

zij , and a symmetric

correlation factor G{zij}. F results from the Pauli principle, and G is caused by Coulomb
interactions. One can represent G diagrammatically [1] by distributing N points on the
circumference of a circle, and drawing appropriate lines representing correlation factors (cfs)
zij between pairs. Here, of course, zij = zi − zj , where zi is the complex coordinate of the ith

electron. Laughlin correlations for the ν = 1/3 filled incompressible quantum liquid (IQL) state
contain two cfs connecting each pair (i, j). For the Moore-Read state of the half-filled excited
Landau level (LL), with ν = 2 + 1/2, the even value of N for the half-filled LL is partitioned
into two subsets A and B, each containing N/2 electrons [2]. For any one partition (A, B),
the contribution to G is given by GAB =

∏
i<j∈A

z2

ij

∏
k<�∈B

z2

k�. The full G is equal to the
symmetric sum of contributions GAB over all possible partitions of N into two subsets of equal
size. For Jain states at filling factor ν = p/q < 1/2, the value of the single particle angular
momentum � satisfies the equation 2� = ν−1N −Cν , with Cν = q + 1− p. The values of (2�, N)
define the function space of G{zij}, which must satisfy a number of conditions. For example,
the highest power of any zi cannot exceed 2�+1−N . In addition, the value of the total angular
momentum L of the lowest correlated state must satisfy the equation L = (N/2)(2�+1−N)−KG,
where KG is the degree of the homogeneous polynomial generated by G. Knowing the values of
L for IQL states (and for states containing a few quasielectrons or a few quasiholes) from Jain’s
mean field CF picture allows one to determine KG . The dependence of the pair pseudopotential
V (L2) on pair angular momentum L2 suggests a small number of correlation diagrams for a
given value of the total angular momentum L. Correlation diagrams and correlation functions
for the Jain state at ν = 2/5 and for the Moore-Read states will be presented as examples. The
generalizations of the method of selecting G from small to larger systems will be discussed.

1. Introduction

In this paper, we study correlations resulting from Coulomb interactions in fractional quantum
Hall systems. We introduce correlation diagrams to guide in the selection of the correlation
functions caused by interactions. Electrons are represented by points located at positions zi in
the complex plane, and there are correlation lines connecting pairs of electrons. A correlation
line connecting particles i and j represents a correlation factor (cf) zij = zi − zj. Although our
correlation diagrams appear to resemble chemical bonds, they are just the opposite. A factor

zm
ij forbids the pair (i, j) from having a separation smaller than m1/2λ, where λ = (h̄c/eB)1/2 is

the magnetic length. An N electron system can be partitioned into subsets (A,B,C, . . .); one
example is (N) → (N/2, N/2). There can be different numbers of cfs between pairs belonging to
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different subsets, and still different numbers between particles in different subsets. The number
of cf lines associated with a particular partition can be determined. The subgroup of the full
symmetric group associated with the conjugacy class of the partition is used to obtain the
full symmetric correlation function. Our objective is to use correlation diagrams to gain new
insights into correlations in strongly interacting many-body systems. New electronic correlation
functions are obtained for states containing a few quasielectrons (QEs) in a partially filled QE
shell, as well as for the incompressible quantum liquid states containing integrally filled QE
shells.

For weakly interacting many-body systems, the interaction Hamiltonian HI can be treated
as a perturbation acting on energy eigenfunctions of a non-interacting Hamiltonian H0.
For strongly interacting systems, this standard many-body perturbation approach [3] is not
applicable because the interaction energy is much larger than the single particle energy scale.
The fractional quantum Hall (FQH) effect [4] is the ultimate example of strongly interacting
many-body systems. In determining the energy spectrum of the interacting system at very large
values of the applied magnetic field B0, there is only one relevant energy scale, the Coulomb scale
Vc = e2/λ, where λ = (h̄c/eB0)

1/2 is the magnetic length. The non-interacting single particle
states [5] for an electron confined to the x-y plane have eigenvalues εnm = h̄ωc[n+ 1

2(1+m+|m|)],
where ωc = eB0/μc is the electron cyclotron frequency, m = 0,±1,±2, . . ., and n is a non-
negative integer. The lowest energy level (Landau level LL0) has n = 0, and m equal to a
negative integer or zero. For a disk of finite area A, the allowed values of m for the LL0 are
{0,−1,−2, . . . ,−Nφ}, where Nφ = AB0(h̄c/e)−1 is the number of flux quanta of the applied
magnetic field B0 passing through the sample. Each of the Nφ + 1 single particle states has the
same energy 1

2 h̄ωc. The non-interacting eigenfunction can be expressed in terms of a complex
coordinate z = x− iy of the electron as φ(z) ∝ zm. Then, for LL0, m ∈ g0 ≡ {0,+1, . . . ,+Nφ}.
Antisymmetrized products of N functions φm(z) selected from the set g0 form the function space
(2�,N) of the LL0. Here we use 2� in place of Nφ for convenience. Because the particles are
Fermions, an N electron trial wave function can be written as a ubiquitous Gaussian weighting

factor e−
∑

k
|zk|

2/(4λ2), (which is often not explicitly written but is understood), multiplied by
the product of an antisymmetric Fermion factor F{zij} =

∏
i<j zij caused by the Pauli exclusion

principle, and a symmetric correlation function G{zij} caused by Coulomb interactions. Here,
zij = zi − zj , and we often refer to it as a correlation factor (cf), even when it is caused by the
Pauli principle and not by Coulomb correlations.

2. Electron correlations

Laughlin [6] realized that if the interacting electrons could avoid the most strongly repulsive
pair states, an incompressible quantum liquid (IQL) state could result. He suggested a trial
wave function for a filling factor ν (defined as N

2�+1) equal to the reciprocal of an odd integer n,

in which the correlation function Gn(zij) was given by
∏

i<j zn−1
ij . This function is symmetric

and avoids all pair states with relative pair angular momentum smaller than n (or all pair
separations smaller than rn = n1/2λ). One can represent this Laughlin correlation function
diagrammatically by distributing N dots, representing N electrons on the circumference of a
circle, and drawing double lines, representing two correlation factors (cfs) connecting each pair.
Thus, there are 2(N − 1) cf factors in G{zij} emanating from each particle i. Adding (N − 1) cf
factors emanating from each particle due to the Fermion factor F{zij} gives a total of 3(N − 1)
cfs emanating from each particle in the trial wave function Ψ. This number cannot exceed
Nφ = 2� defining the function space (2�,N) of the LL0.

The other well-known trial wave function is the Moore-Read [7] paired function describing
the IQL state of a half filled spin polarized first excited Landau level (LL1). This wave
function Ψ can be written in the form Ψ = F · GMR, where the correlation function is taken as
GMR = F{zij}Pf(z−1

ij ). The second factor is called the Pfaffian of z−1
ij . It can be expressed as
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[7, 8]

Pf(z−1
ij ) = Â

N/2∏
i=1

(z2i−1 − z2i)
−1,

where Â is an antisymmetrizing operator and the product is over pairs of electrons. There
has been considerable interest in the Moore-Read paired state and its generalizations [9] based
on rather formidable conformal field theory. We propose a simple intuitive picture of Moore-
Read correlations with the hope that it might lead to new insight into correlations in strongly
interacting many-body systems.

For the simple case of an N = 4 particle system, the Pfaffian can be expressed as

Pf(z−1
ij ) = Â{(z12z34)

−1} =
[
(z12z34)

−1 − (z13z24)
−1 + (z14z24)

−1
]
. (1)

The product of F{zij} and Pf(z−1
ij ) gives for the Moore-Read correlation function of

GMR{zij} = z13z14z23z24 − z12z14z23z34 + z12z13z24z34. (2)

The correlation diagram for GMR{zij} contains four points with a pair of cfs emanating from
each particle i going to different particles j and k. There are three distinct diagrams shown in
Fig. 1. Note that GMR is symmetric under permutation, as it must be, since it is a product of
two antisymmetric functions F{zij} and Pf{z−1

ij }.

1 2

4 3

1 2

4 3

1 2

4 3

Figure 1. Moore-Read correlation diagram for N = 4. Dots represent particles, and solid lines
represent cfs zij . GMR is the symmetric sum of the three diagrams and is given by Eq. (2).

A simpler, but seemingly different, correlation is the quadratic function given by GQ ≡

Ŝ(z2
12z

2
34), where Ŝ is a symmetrizing operator. The correlation diagram for GQ{zij} is shown

in Fig. 2. GMR and GQ are clearly different. However, when they are expressed as homogeneous
polynomials in the independent variables z1 to z4 (by simple multiplication), the two polynomials
are the same up to normalization constant. The same was true for the an N = 6 particle system,
leading to the conjecture that GMR{zij} was equivalent to GQ{zij} for all N . This conjecture
was proved by our group before we discovered that Cappelli et al. [9] had already shown the
equivalence.

There are several advantages to the use of GQ. First, it is simpler to partition N into
two subsets of N/2, e.g., {1, 2, . . . , N/2} = A and {N/2 + 1, . . . , N} = B, and define
gAB = gAgB =

∏
i<j∈A z2

ij

∏
k<�∈B z2

k�. Then the full correlation function can be written as

ŜN{gAB}, where ŜN symmetrizes gAB over all N particles. This symmetrization is equivalent
to summing gAB over all possible partitions of N into two equal size subsets A and B. In Fig.
3, we show the contribution to GQ for N = 8 particles for one partition in which A = {1, 3, 5, 7}
and B = {2, 4, 6, 8}.
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Figure 2. Quadratic correlation functions. A double line represents z2
ij , the square of a cf. GQ

is the sum of the contributions from the three diagrams.
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37

46

5

Figure 3. Correlation diagram for GQ{zij} in an eight electron system due to the partition
A = {1, 3, 5, 7} and B = {2, 4, 6, 8}. The full correlation function is the sum over all distinct
partitions into subsets A and B, each containing N/2 = 4 particles. The trial wave function is
ΨQ(1, 2, . . . , 8) = F{zij}GQ{zij}.

3. Jain’s composite Fermion approach

Jain [10] introduced a composite Fermion (CF) picture by attaching to each electron (via a gauge
transformation) a flux tube which carried an even number 2p of magnetic flux quanta. This
Chern-Simons (CS) flux has no effect on the classical equations of motion since the CS magnetic
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field b(r) = 2pφ0
∑

i δ(r − ri)ẑ vanishes at the position of each electron (it is assumed that no
electron senses its own CS flux). Here φ0 = h̄c/e is the quantum of flux, and the sum is over all
electron coordinates ri. The classical Lorentz force on the ith electron due to the CS magnetic
field is (−e/c)vi × b(ri) and b(ri) caused by the CS flux on every j not equal to i vanishes at
the position ri. The CF model results in a much more complicated interaction Hamiltonian,
but simplification results from making a mean field (MF) approximation in which the CS flux
and the electron charge are uniformly distributed over the entire sample. The average electronic
charge −eN/A is canceled by the fixed background of positive charge introduced to make the
total charge vanish. This MF CF approximation results in a system of N non-interacting CFs
(CF=electron plus attached flux tube) moving in an effective magnetic field b∗ = νb. An effective
CF filling factor ν∗ was introduced satisfying the equation

ν∗−1 = ν−1 − 2p. (3)

This resulted in a filled CF level when ν∗ was equal to an integer (ν∗ = n = ±1,±2, . . .) and a
IQL daughter state at ν = n(1 + 2pn)−1. This Jain sequence of states was the most robust set
of fractional quantum Hall states observed in experiments.

Making use of Haldane’s spherical geometry [11, 12, 13], Chen and Quinn [14] introduced
an effective CF angular momentum �∗ satisfying the relation �∗0 = � − p(N − 1), where 2p is
the number of CS flux quanta per electron. The lowest CF Landau level (CF LL0) could hold
(2�∗ + 1) CFs. There were nQE = N − (2�∗ + 1) composite Fermion QEs of angular momentum
�QE = �∗ +1 or nQH = (2�∗ +1)−N CF QHs of angular momentum �QH = �∗ if 2�∗ +1 was not
equal to N . This resulted in a lowest band of quasiparticle (QP) states separated by a gap from
the higher energy quasi continuum. This allowed the total angular momentum states in this
band to be determined by addition of angular momentum of nQP quasiparticles each of angular
momentum �QP using the rules for addition of Fermion angular momenta.

In Table 1, we summarize the results of Jain’s MF CF picture of the low energy states of an
N = 4 electron system for values of 2� equal to 9, 8, 7, and 6. These correspond to the ν = 1/3
filled IQL states and its excited states containing one, two, and three QEs. The table gives the
values of �, the single electron angular momentum, and the resulting values of �∗0 = �− (N − 1),
the CF angular momentum; nQE = N − (2�∗0 + 1), the number of QEs; �QE, the QE angular
momentum; kM = 2� − (N − 1), the maximum number of correlation factor (cf) lines that can
emanate from an electron in the correlation function G; and the allowed values of the total
angular momentum L which result.

� �∗0 nQE �QE kM L

4.5 1.5 0 2.5 6 0

4 1 1 2 5 2

3.5 0.5 2 1.5 4 0 ⊕ 2

3 0 3 1 3 0

Table 1. Values of � for an N = 4 electron
system and the values of �∗0, nQE, �QE, kM ,
and L which result.

It might seem surprising that Jain’s very simple CF picture correctly predicts the angular
momenta in the lowest band of states for any value of (2�,N) which defines the function space
of the many-body system. The initial guess that the Chern-Simons gauge interaction and the
Coulomb interaction between fluctuations beyond the mean field canceled is certainly not correct.
The gauge field interactions are proportional to h̄ωc which varies linearly with B, the applied
magnetic field. However, the Coulomb interactions are proportional to e2/λ (where λ is the
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magnetic length) and vary as B1/2. The two energy scales cannot possibly cancel for all values
of B. For very large values of B, only the Coulomb scale is relevant in determining the low
energy band of states. Our group at the University of Tennessee demonstrated that the MF CF
picture gave a valid description of the lowest band of states if the pair interaction energy V (L2)

increased with increasing L2 faster than the eigenvalue of L̂2
2, the square of the pair angular

momentum [15].
Knowing this, and the occupancies of CF LLs from Jain’s MF CF picture, makes it interesting

to explore the correlations among the original electrons. We do this using correlation diagrams
for small systems.

4. Correlation diagrams

We have already stated that Laughlin correlation can be described by drawing two cf lines
between each pair 〈i, j〉. A cf line between i and j represents a correlation factor zij . The
wave function Ψ(1, 2, . . . , N) = F{zij}G{zij} describing the IQL state at ν = 1/3 will contain
3(N − 1) cf lines emanating from each particle i. (N − 1) cf lines are associated with F{zij},
leaving 2(N−1) cf lines associated with G{zij}. The correlation diagram for a Laughlin ν = m−1

filling factor is simple, because every pair has exactly the same correlations. For other states,
like a state with nQE quasielectrons, the correlations are more complicated.

For simplicity, let’s use as an example the N = 4 particle system with values of 2� in the
range 6 ≤ 2� ≤ 9. The values of �∗0, nQE, �QE, kM , and the total angular momentum L of the
lowest energy bands for these states are given in Table 1. We define KF = N(N − 1)/2 as the
number of cf lines appearing in the Fermi function F{zij}, and KG as the number appearing
in the correlation function G{zij}. Knowing N�, KF , and the allowed values of total angular
momentum L, we can determine KG for each of the states listed in Table 1. For � = 4.5, 4, and
3 the corresponding values of KG are 12, 8, and 6. For � = 3.5, there are two multiplets L = 0
(KG = 8) and L = 2 (KG = 6). We also know kM from the table. With this information, we
can construct correlation functions which have to be symmetric under permutation of a pair of
particles. We show one correlation diagram for each of the values of 2�. If it is not symmetric,
we must apply Ŝ4 on the function to symmetrize over all four particles.

For (2�,N) = (9, 4) there is only a single diagram; it has 2 cfs connecting each pair of particles.
For a one QE state, we must partition (4) into (3,1). The single particle i belongs to subset
A and the other three j, k, � belong to subset B. The latter subset has Laughlin correlations
(z2

jk) between each pair belonging to B. Particle i (in subset A) is the QE, and has single cf
lines connecting it with two of the three particles in subset B. Fig. 4 shows one diagram. The
diagram corresponds to z12z13z

2
23z

2
24z

2
34, and this function must be symmetrized by summing

over all partitions of (4) into (3,1), i.e., including diagrams in which A can be 1, 2, 3, or 4.
Notice that kM = 5, N� = 16, and KG = 8, giving an L = 2 state for the single QE. For the
two QE state with (2�,N) = (7, 4), we partition (4) into (2,2). For example, let one partition
be A = (1, 2) and B = (3, 4). One term in the correlation diagram is shown in Fig. 5. This
diagram corresponds to z2

12z
2
14z

2
23, and it must be symmetrized over all four particles. Notice

that kM = 4, N� = 14, and KG = 6, giving an L = 2. To obtain the L = 0 multiplet, we must
add two more cfs. Fig. 6 shows one diagram for this case. It corresponds to a contribution
(z12z23z34z41)

2, and it must be symmetrized. Now KG = 8, and L = 0 results.
For (2�,N) = (6, 4), we have three QEs with kM = 3, and we can construct the diagram

shown in Fig. 7. When symmetrized, it gives

G{zij} = (z12z34 + z13z24)(z13z42 + z14z32)(z14z23 + z23z34). (4)

There is only one state of angular momentum L = 0, and the wave function Ψ = FG obtained
using equation (4) agrees exactly with that obtained by standard angular momentum addition.
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1 2

4 3

Figure 4. One contribution to G
for (2�,N) = (8, 4).

1 2

4 3

Figure 5. One contribution to G
for (2�,N) = (7, 4) that gives L =
2.

1 2

4 3

Figure 6. One contribution to G
for (2�,N) = (7, 4) that gives L =
0.

1 2

4 3

Figure 7. One contribution to G
for (2�,N) = (6, 4).

It is worth mentioning that there are three diagrams when Fig. 6 is symmetrized giving
three terms (z12z23z34z41)

2, (z12z13z24z34)
2, and (z13z14z23z24)

2. Their sum gives a symmetric
G{zij}. For Fig. 7, there are six diagrams giving (z12z34)

2z13z24, (z12z34)
2z14z23, (z13z24)

2z12z34,
(z13z24)

2z14z23, (z14z23)
2z12z34, and (z14z23)

2z13z24. Plus or minus signs must be chosen for each
term so that the resulting correlation function G{zij} is symmetric.

5. Thoughts on larger systems

Though we have used the N = 4 particle system as a simple example, it is not difficult to
generalize to the case in which N is an arbitrary even integer. First, let us consider the Moore-
Read state.

For the Moore-Read state, 2� = 2N − 3, and we let N = 2n, where n is an integer. Then we
have

(i) 2� = 4n − 3
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(ii) kM = 2n − 2

(iii) Take a partition such as A = (1, 2, . . . , N/2), B = (N/2 + 1, . . . , N).
Take Laughlin correlations within subsets and write gA =

∏
i<j∈A z2

ij , gB =
∏

k<�∈B z2
k�,

and
G =

∑
all partitions

gAgB . (5)

Note that N� = n(4n − 3), KF = n(2n − 1), and KG = n(2n − 2) giving L = 0. There
are Laughlin correlations among the n particles in A and among the n particles in B, but no
correlations between particles in different subsets. This is a simple intuitive way of fitting N
particles into the function space (2�,N) with maximum avoidance of the most repulsive pair
states (ones with pair angular momentum L2 < 2� − 3).

For the Jain state at ν = 2/5, we can apply the same technique. In that case, we have

(i) 2� = 5n − 4

(ii) kM = 3n − 3

(iii) Partition into two subsets (A,B), as with the Moore-Read case.
Take gA and gB exactly as in that case.

(iv) Add a factor due to intersubset correlations to increase KG so that an L = 0 state is
produced despite the increase in the value of 2�. For a partition such as A = (1, 2, . . . , n),
B = (n + 1, . . . , 2n), define the intersubset correlation function

gAB =

⎛
⎝∏

i∈A

∏
j∈B

zij

⎞
⎠ ∑

σ∈Sn

n∏
i=1

z−1
σ(i),n+i. (6)

In (6), the first factor gives a product of n2 correlation factors zij . The second factor is a sum
of products of n factors of z−1

ij . Define GAB = gAgBgAB for a given partition (A,B). Then the
full correlation function G in this case is the sum of the GAB taken over all possible partitions.

6. Summary and conclusions

We have introduced a novel intuitive way of looking at electron correlations. For the very
simple case of N = 4 particles, it gives, without numerical calculation, the exact ground state
wave function of the Jain ν = 2/5 filled state. For 2n = 6 particles, the correlation function
G{zij} is given by the sum over all partitions of (2n) into two equivalent subsets (n, n) of
GAB (the contribution for the particular partition (A,B)). We have demonstrated that the
trial wave function constructed with this correlation function has almost 99% overlap with
the wave function [16] obtained by exact numerical diagonalization of the Coulomb interaction
HI =

∑
i<j e2/|zij |. This result was presented as a poster at the International Conference on

High Magnetic Fields in Semiconductors in 2014, and appeared in an unpublished workbook
proceedings of the conference (available on the conference website).

Our method of obtaining the correlation functions for the Moore-Read and the Jain states
is far more simple and intuitive than that of conformal field theory. It should be noted that
the contributions of all partitions to the wave function are essentially the same since the wave
function itself is antisymmetric. One need only count the number nj of pairs which have j
correlation factor lines and be sure that

∑
j nj = N(N − 1)/2 and

∑
j jnj = KG .
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