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Abstract. Jain [1] introduced a simple mean-field (MF) composite Fermion (CF) picture by
attaching to each electron in a quantum Hall system a flux tube producing a Chern- Simons
magnetic field b(r) = 2pϕ0

∑
i
δ(r − ri)ẑ. Here ϕ0 = hc/e is the quantum of flux, and the

sum is over all electron coordinates ri . He then averaged the total flux and the total charge
(electronic plus positive background) over the entire sample. This MF picture gave a system
of noninteracting CFs in an effective magnetic field B∗

0 = νB0. It predicted incompressible
quantum liquid (IQL) states at filling factors ν = n(1+2pn)−1 for integral values of n. Chen and
Quinn [2] demonstrated that Jain’s MF CF picture predicted the total angular momentum values
of the lowest energy band of states for any value of the applied magnetic field B0. Justification
of when the MFCF picture was valid was given by Wojs and Quinn [3], who extended the
CF hierarchy scheme of Sitko et al. [4]. The CF hierarchy gave the Jain states for integrally
filled CF Landau levels (CF LLs), and the Haldane hierarchy of all odd denominator fractions
when quasiparticles in the highest (partially filled) CF angular momentum shell had interactions
sufficiently similar to the Coulomb interactions of electrons in the lowest Landau level. Sitko
et al. showed that the predictions of the CF hierarchy scheme were not always correct. By
using a simple pair angular momentum identity and the concept of fractional grandparentage,
Wojs and Quinn showed that higher generations of CFs could result from the interactions of
the original CF quasiparticles only if their interaction energy VQP(L2) as a function of their
pair angular momentum L2 increased with increasing L2 faster than L2(L2 + 1). For Laughlin
quasielectrons of the ν = 1/3 IQL state this condition was not satisfied. Therefore, no second
generation of CFs could occur. The observed IQL at electron filling factor ν = 4/11 can not be
attributed to a daughter IQL state at νQE = 1/3 in a totally spin polarized system. Rather, it
is an IQL state of electron pairs with pair angular momentum ℓp = 2ℓ− 1. A description of the
IQL state of electron pairs and its low energy excitations will be presented, and the possibility
of a spin flip quantum phase transition as a function of well width and applied magnetic field
will be discussed.

1. Introduction
For a system of noninteracting electrons confined to a 2D surface in the presence of a strong
perpendicular magnetic field B0, the density of states, g(ε), consists of a series of degenerate
levels [5] at εn = h̄ωc(n + 1/2) called Landau levels (LLs). For a finite sample of surface area
A, the lowest LL can accommodate (Nϕ+1) electrons, where Nϕ = B0A(hc/e)−1 is the number
of magnetic flux quanta passing through the surface area A. The energy gaps between LLs give
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rise to the integral quantum Hall (IQH) effect whenever the filling factor ν = N(Nϕ + 1)−1 is
an integer [6].

It is convenient to take the 2D surface on which the electrons reside to be a sphere of radius
R = (A/2π)1/2 with a magnetic monopole of strength 2Q flux quanta at its center causing a
radial magnetic field of magnitude B0 = 2Q(hc/e)/(4πR2). This spherical geometry [7] has the
advantage of a finite surface area with full rotational symmetry. The single particle angular
momentum ℓ has a projection ℓz satisfying −ℓ ≤ ℓz ≤ ℓ. On the plane z = 0, the allowed values
of mz, the z-component of angular momentum, must belong to the set g0 = {0, 1, 2, · · · , 2ℓ}. The
total angular momentum L of the N particle system has a projection Lz on the sphere. On the
plane, M is defined as the sum over all electrons of the value of mz for each electron. Because
ℓz and mz differ by ℓ, it is clear Lz = M − Nℓ. The eigenstates on the sphere can be written
as |L,Lz⟩ and on the plane as |MR,MCM⟩ where M = MR + MCM is the sum of relative and
center of mass angular momenta. Interaction energies depend only on L but not Lz, and only
on MR but not MCM. [8] It is apparent that MR = Nℓ−L and MCM = L+Lz. To construct an
N electron product state of angular momentum L = 0, a linear combination of product states
with Lz = 0 is required, implying that L = Nℓ−M .

The fractional quantum Hall (FQH) effect discovered by Tsui et al. [9] displayed behavior
similar to the IQH effect at specific fractional values of the filling factor ν. The energy gaps
giving rise to this FQH effect could only be caused by interactions between the electrons, making
it a quantum mechanical many-body problem with no exact solution for N > 2. In fact, for
h̄ωc much larger than Vc = e2/λ, where λ = (h̄c/eB0)

1/2 is the magnetic length, the Coulomb
scale Vc is the only relevant energy for determining the low energy states. No standard methods
based on diagrammatic perturbation theory are valid.

Laughlin [10] suggested that an incompressible quantum liquid (IQL) state occurred whenever
it became possible for every pair of electrons to avoid pair states with pair angular momentum,
L2, larger than 2ℓ− 3, the pair state with the largest Coulomb repulsion. The function space of
this N -body problem depends on Nϕ = 2ℓ, which sets the number of single particle functions,
and on N , the number of electrons, which must fill a fraction ν = N/Nϕ of these states. Laughlin
suggested a trial wave function Ψ(1, 2, · · · , N) which was proportional to F{zij}G{zij}. Here
F =

∏
ij zij is an antisymmetric Fermion factor caused by the Pauli principle, and G{zij} is a

symmetric correlation function caused by the Coulomb interactions. The complex coordinates
of the ith electron is denoted by zi(= xi − ıyi) and zij = zi − zj . Laughlin also showed that
the elementary excitations of the ν = 1/3 IQL state were quasielectrons (QEs) and quasiholes
(QHs) of charge ∓e/3. He proposed for the IQL at ν = 1/3 that G{zij} =

∏
i<j z

2
ij .

Haldane [7] suggested that the problem of putting NQP fractionally charged quasiparticles
(QPs) into a QP LL was essentially the same as the original problem of putting N electrons into
the electron LL, if the interaction VQP(L2) between QPs was sufficiently similar to the Coulomb
interaction between electrons. This assumption generated a hierarchy of FQH states at all filling
factors equal to odd denominator fractions.

2. Composite fermion approach
Jain [1, 11] introduced a composite Fermion (CF) picture by attaching to each electron (via a
gauge transformation) a flux tube which carried an even number, 2p, of magnetic flux quanta.
This Chern-Simons(CS) flux has no effect on the classical equations of motion, since the Chern-
Simons magnetic field b(r) = −2pϕ0

∑
i δ(r− ri)ẑ vanishes at the position of each electron (it is

assumed that no electron senses its own Chern-Simons flux). Here ϕ0 = hc/e is the quantum of
flux, and the sum is over all electron coordinates ri. In a mean-field (MF) approximation, the CS
flux and the electron charge are uniformly distributed over the entire area of the sample, giving
a system of N composite Fermions (electrons plus CS flux) without interactions (the average
charge of −eN/A is canceled by the fixed uniform positive charge background). The effective
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composite Fermion filling factor ν∗ satisfies Jain’s equation [1, 11] ν∗−1 = ν−1 − 2p. When ν∗

is an integer ν∗ = n, an integral number of CF levels are filled giving an L = 0 daughter state
at ν = n(1 + 2pn)−1. This Jain sequence of MF CF states (with n = ±1,±2, · · ·) is the most
robust set of fractional quantum Hall states observed experimentally.

Chen and Quinn [2] introduced an effective CF angular momentum ℓ∗ satisfying the relation
ℓ∗0 = ℓ − p(N − 1), where 2p is the number of CS flux quanta attached to each electron to
form composite Fermions. Then Jain’s simple MF CF picture predicted not only the value of
2ℓ at which an IQL state occurred, but also the total angular momentum values for the lowest
band of energy states at any value of the applied magnetic field. This lowest band occurs
when the minimum number of QPs consistent with the value of (2ℓ,N), defining the function
space, is present. The allowed values of the QH and QE angular momenta are ℓQH = ℓ∗0 and
ℓQE = ℓ∗0 + 1. The values of the total angular momentum in the lowest band are obtained by
angular momentum addition of nQP QP angular momenta ℓQP, treating the QPs as identical
Fermions. The justification of the simple Jain MF CF picture has been given by Wojs and
Quinn [12] and by Benjamin et al. [13] and is reviewed briefly in a later section of this paper.

As an example, consider the 10 electron systems defined by (2ℓ,N) = (25, 10) and (29,10).
The former case has two QEs, each with ℓQE = 9/2. The latter has two QHs, each with
ℓQH = 11/2. For two identical Fermions, each with angular momentum ℓ, the allowed values
of the pair angular momentum are given by L2 = 2ℓ − j, where j is an odd integer. This
gives [14, 15] the two QE band of L = 0 ⊕ +2 ⊕ +4 ⊕ +6 ⊕ +8, and the two QH band with
L = 0⊕+2⊕+4⊕+6⊕+8⊕10. In Jain’s simple MF picture, the QPs are noninteracting, so that
the energies are the same for each value of L2 (E = 2εQE or E = 2εQH for the two different cases,
where εQE and εQH are the single QE and QH energies, respectively). Numerical diagonalization
studies [14, 15] show that this degeneracy does not occur. In Fig. 1, we reproduce numerical

Figure 1. The spectra of
10 electrons in the lowest
Landau level calculated on
a Haldane sphere with 2Q
between 25 and 29. The open
circles and solid lines mark
the lowest energy bands with
the fewest composite fermion
quasiparticles.(See [15].)
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results obtained earlier [15] for an N = 10 electron system in the lowest LL (LL0). Frames (d)
and (e) contain 2 QEs and 2 QHs, respectively. From the numerical results one can extract
VQE(L2) and VQH(L2), the interaction energies of a pair of QEs (QHs) as a function of the
QP pair angular momentum. These interaction energies (or pseudopotentials) are obtained up
to an overall constant which has no effect on correlations. In frame (d) there are two QEs
each with ℓQE = 9/2, and in frame (d) there are two QHs each with ℓQH = 11/2. The lowest
energy bands, separated from a quasi-continuum of higher states by a gap, gives us VQE(L2) for
L = 0⊕+2⊕+4⊕+6⊕+8, and VQH(L2) for L = 0⊕+2⊕+4⊕+6⊕+8⊕ 10. VQE(L2) has a
maximum at L2 = 6 and minima at L2 = 8 and L2 = 4. VQH(L2) has maxima at L2 = 10 and
L2 = 6 and minima at L2 = 8 and L2 = 4. This behavior is quite different from the electron
pseudopotential in the LL0 which increases monotonically with increasing L2.

For large systems (e.g. N > 14) numerical diagonalization of the electron-electron interactions
becomes difficult, so we have investigated the low lying energy states by determining the number
of QEs or QHs (nQE or nQH), their angular momenta ℓQE and ℓQH, and their interaction energies
VQE(L2) and VQH(L2). Since nQE (or nQH) is much smaller than N , and ℓQE (and ℓQH) much
smaller than ℓ, the electron angular momentum, we can easily diagonalize these smaller systems.
One example [16] is shown in Fig. 2 for the case (2ℓ,N) = (29, 12) which corresponds to
(2ℓQE, nQE) = (9, 4). The low lying states of the electron system are very close to those of the
four QE system, suggesting that description in terms of QP excitations interacting via VQP(L2)
is reasonable.

3. The composite Fermion hierarchy
Sitko et al. [4] introduced a very simple CF hierarchy picture in an attempt to understand
Haldane’s hierarchy of Laughlin correlated daughter states and Jain’s sequence of IQL states
with integrally filled CF LLs. Jain’s MF CF picture neglected interactions between QPs. The
gaps causing incompressibility were energy separations between the filled and lowest empty
single particle CF LLs. Not all odd denominator fractions occurred in the Jain sequence
ν = n(2pn ± 1)−1, where n and p are non-negative integers. The missing IQL states were
ones with partially filled CF QP shells. The energy gap causing their incompressibility resulted
from residual interactions between the CF QPs. For an initial electron filling factor ν0, the
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(a) electrons, N=12, 2l=29

(b) QE's, N=4, 2l=9

Figure 2. Energy spectra for N = 12 electrons in LL0 with 2ℓ = 29, and for N = 4 QEs in CF
LL1 with 2ℓ = 9. The energy scales are the same, but the QE spectrum was determined using
VQE(R) as the pair pseudopotential (up to an arbitrary constant). (See [16].)
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relation between ν0 and ν∗0 , the effective CF filling factor, satisfied ν−1
0 = (ν∗0)

−1+2p0, and gave
rise to the Jain states when ν∗0 was equal to an integer n. What happens if ν∗0 is not an integer?
It was suggested [4] that then one could write ν∗0 = n1 + ν1, where n1 was an integer and ν1
represented the filling factor of the partially filled CF QP shell. If Haldane’s assumption that the
pair interaction energy VQP(L2), as a function of the angular momentum L2 of the QP pair, was
sufficiently similar to V0(L2), the interaction energy of the electrons in the LL0, then one could
reapply the CF transformation to the CF QPs by writing (ν∗1)

−1 = ν−1
1 − 2p1. Here ν1 is the

CF QP filling factor and 2p1 is the number of CS flux quanta added to the original CF QPs to
produce a second generation of CFs. For ν∗1 = n2, an integer, this results in ν1 = n2(2p1n2±1)−1,

and a daughter IQL state at ν−1
0 = 2p1+

[
n1 + n2(2p1n2 + 1)−1

]−1
. This new odd denominator

fraction does not belong to the Jain sequence. If ν∗1 is not an integer, then set ν∗1 = n2 + ν2 and
reapply the CF transformation to the CF QE in the new QP shell of filling factor ν2. In general
one finds at the ℓth level of the CF hierarchy ν−1

ℓ = 2pℓ + (nℓ+1 + νℓ+1)
−1. When νℓ+1 = 0,

there is a filled CF shell at the ℓth generation of the CF hierarchy. This procedure generates
Haldane’s continued fraction leading to IQL states at all odd denominator fractional electron
fillings. The Jain sequence is a special case in which ν∗0 = n gives an integral filling of the first
CF QP shell, and the gap is the separation between the last filled and first empty CF levels.

The CF hierarchy picture was tested by Sitko et al. for the simple case of (2ℓ,N) = (18, 8) for
LL0 by comparing its prediction to the result obtained through exact numerical diagonalization.
For this case 2ℓ∗0 = 2ℓ − 2(N − 1) = 18 − 2(7) = 4. Therefore CF LL0 can accommodate
2ℓ∗0+1 = 5 CFs. The three remaining CFs must go into CF LL1 as CF QEs of angular momentum
ℓQE = ℓ∗0+1 = 3. This generates a band of states with L = 0⊕+2⊕+3⊕+4⊕+6. This is exactly
what is found for the lowest energy band of states obtained by numerical diagonalization shown
in Fig. 3. Reapplying the CF transformation to the first generation of CF QEs would generate
2ℓ∗1 = 2ℓ∗0 − 2(NQE − 1) = 4− 2(2) = 0, giving an L = 0 daughter IQL state if the CF hierarchy
were correct. Clearly the lowest energy state obtained in the numerical diagonalization does
not have angular momentum L = 0 as predicted by the CF hierarchy. The L = 0 and L = 3
multiplets clearly have higher energies than the other three multiplets. Sitko et al. conjectured
that this must have resulted because the pseudopotential VQE(L2) was not sufficiently similar
to that of electrons in LL0 to support Laughlin correlations. Laughlin correlations are essential
for forming a next generation of CFs.

The QEs and QHs have residual interactions that are more complicated than the simple
Coulomb interaction in LL0. We have already seen from Fig. 1(d) and (e), that we can obtain
VQP(L2) up to an overall constant from numerical diagonalization of N -electron systems in
LL0. More careful estimates of VQE(R) and VQH(R) (where R = 2ℓ − L2, and L2 is the pair
angular momentum) are shown in Fig. 4. We define a pseudopotential to be harmonic if it
increases with L2 as VH(L2) = A + BL2(L2 + 1), where A and B are constants. For LL0, the
actual pseudopotential V (L2) always increases with L2 more rapidly than VH(L2). For QEs in
CF LL1, the pseudopotential VQE(L2) has minima at L2 = 2ℓ − 1 and at L2 = 2ℓ − 5, and a
maximum at L2 = 2ℓ− 3. This oscillatory behavior of the interaction energy of a QE pair must
be responsible for the failure of the CF hierarchy prediction of an L = 0 IQL state.

4. Justification of the CF approach
Pan et al. [17] found IQL states of electrons in LL0 that do not belong to the Jain sequence of
integrally filled CF states. One example is the ν = 4/11 filling factor of a state that is assumed
to be fully spin polarized. Numerical diagonalization studies of fully spin polarized systems
did not find an L = 0 IQL ground state at νQE = 1/3, which would result in an IQL state at
electron filling factor of ν = 4/11. In addition, Pan et al. found strong minima in ρxx at even
denominator filling factors (ν = 3/8 and ν = 3/10) suggesting the existence of IQL states that
can’t be part of the CF hierarchy. Our research group has made an important contribution to
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Figure 3. Low energy spectrum of 8 electrons at 2ℓ = 18. The lowest band contains 3 QEs
each with ℓQE = 3. Reapplying the CS mean-field approximation to these QEs would predict
an L = 0 daughter state corresponding to ν = 4/11. The data makes it clear that this is not
valid. (See [16].)

this field, by rigorously proving [14, 15, 16] under which conditions Jain’s elegant CF approach
correctly predicts the angular momentum multiplets belonging to the lowest energy sector of
the spectrum for any value of the applied magnetic field. Because there is no small parameter
in this strongly interacting many body system, our proof does not involve treating fluctuations
beyond the MF by a perturbation expansion. It involves proving some rigorous mathematical
theorems and applying them, together with well-known concepts frequently used in atomic and
nuclear physics. We outline these theorems and give references to earlier publications for proofs.
[16]

Theorem 1: Let L̂ =
∑

j L̂j be the total angular momentum operator of an N Fermion system,

and L̂ij = l̂i + l̂j be the angular momentum operator of the pair ⟨i, j⟩. Then

L̂2 +N(N − 2)l̂2 −
∑
⟨i,j⟩

L̂2
ij = 0. (1)

where the sum is over all pairs. Here we assume N Fermions are in a shell of angular momentum
ℓ, so each Fermion has angular momentum ℓ and projection ℓz, with −ℓ ≤ ℓz ≤ ℓ.

Theorem 2: The antisymmetric angular momentum multiplets formed from N Fermions in a
shell of angular momentum ℓ can be written as

|lN ;Lα⟩ =
∑
L′α′

∑
L2

GLα,L′α′(L2)|l2, L2; l
N−2, L′α′;L⟩ (2)
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Figure 4. The pseudopotentials of a pair of quasielectrons (left) and quasiholes (right)
in Laughlin ν = 1/3 (top) andν = 1/5 (bottom) states, as a function of relative angular
momentum R. Different symbols mark data obtained in the diagonalization of between 6 and
11 electrons.(See [3].)

Here the index α labels different multiplets with the same value of L, and |l2, L2; l
N−2, L′α′;L⟩

is an N Fermion multiplet of angular momentum L formed from a multiplet |ℓN−2;L′α′⟩ and a
pair wave function |ℓ2, L2⟩. It is antisymmetric with respect to the interchange of indices i and
j when both belong to the set (1,2) or when both belong to the set (3, 4, · · · , N). However, the
coefficient GLα,L′α′(L2), called the coefficient of fractional parentage (CFP) can be chosen so
that |lN ;Lα⟩ is totally antisymmetric. All that we need to know about the CFP is that∑

L′α′

|GLα,L′α′(L2)|2 = PLα(L2), (3)

where PLα(L2) is the probability that multiplet |lN ;Lα⟩ has pairs with pair angular momentum
L2.

Theorem 3: Taking the expectation value of the operator identity (in Theorem 1) in the state
|lN ;Lα⟩ gives

⟨lN ;Lα|
∑
⟨i,j⟩

L̂2
ij |lN ;Lα⟩ = 1

2
N(N − 1)

∑
L2

L2(L2 + 1)PLα(L2). (4)

This makes use of the fact that |lN ;Lα⟩ is totally antisymmetric, so that the sum over all pairs
can be replaced by a sum over the allowed values of the pair angular momentum L2 for any one
pair multiplied by the number of pairs, 1

2N(N − 1).

Theorem 4: If the pseudopotential is harmonic by which we mean V (L2) = VH(L2) =
A + BL2(L2 + 1) where A and B are constants, then every multiplet α with the same total
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angular momentum L has the same energy, given by

Eα(L) = N

[
1

2
N(N − 1)A+B(N − 2)ℓ(ℓ+ 1)

]
+BL(L+ 1). (5)

This means that the degeneracy of the angular momentum multiplets of noninteracting Fermions
is not removed by a harmonic pseudopotential for different multiplets having the same value of
L. [14, 15]

Theorem 5: If GNℓ(L) is the number of independent multiplets of total angular momentum L
that can be formed from N Fermions in a shell of angular momentum ℓ, then GNℓ∗(L) ≤ GNℓ(L)
for every L, if ℓ∗ = ℓ− (N − 1). [13]

Theorem 6: The subset GNℓ∗(L) of angular momentum multiplets of the set GNℓ(L) avoids the
largest allowed pair angular momentum L2 = 2ℓ − 1, which for LL0, corresponds to the largest
pair repulsion.

This is obvious for N = 2 where LMAX
2 = 2ℓ− 1 and L

∗MAX
2 = 2ℓ∗ − 1 = 2ℓ− 3, but it is true

for arbitrary N . This theorem means that the set of states selected by Jain’s MF CF picture
(where ℓ∗ plays the role of the effective CF angular momentum) is subset of GNℓ(L). This subset
avoids pair states with L2 = 2ℓ − 1, and contains multiplets with low angular momentum and
low energy.

Theorem 7: By adding an integral number, α, of Chern-Simons flux quanta (oriented opposite
to the applied magnetic field) to the Hamiltonian for N electrons, not via a gauge transformation,
but adiabatically, the pair eigenstate (in the planar geometry) Ψnm = eimϕun,m(r), where un,m(r)

is the radial wave function, transforms to Ψ̃nm = eimϕun,m+α(r).
These theorems justify Jain’s CF picture when applied to LL0. Is this important? In our

opinion, Jain’s MF CF picture is a brilliant success. It is used very often to interpret experimental
data. However, because Coulomb and CS gauge interactions beyond the MF involve two entirely
different energy scales (h̄ωc = νB and e2/λ ∝

√
B), these two interactions between fluctuations

beyond MF cannot possibly cancel for all values of B. In addition, treating the interactions by
standard many-body perturbation theory can’t be rigorously justified because there is no small
parameter to assume the convergence of the perturbation series.

Because correlations, that is, the lifting of the degeneracy of the angular momentum
multiplets |lN ;Lα⟩ of noninteracting electrons in partially filled LL0 depend on the deviation
of the actual pseudopotential from the harmonic behavior (i.e. on ∆V (L2) = V (L2)− VH(L2)),
it is interesting to explore the simplest possible anharmonicity. The simplest anharmonic
contribution to the pseudopotential can be taken as

∆V (L2) ≡ V (L2)− VH(L2) = k δ(L2, 2ℓ− 1). (6)

If k > 0 it is apparent that the lowest energy multiplet for each value of total angular
momentum L is the one which avoids (to the maximum possible extent) having pairs with
L2 = LMAX

2 = 2ℓ − 1. This is exactly what is meant by Laughlin correlations. Complete
avoidance of pairs with L2 = LMAX

2 cannot occur unless 2ℓ ≥ 3(N − 1). In the limit of large
systems this corresponds to filling factor ν ≤ 1/3. If k < 0, then the lowest energy state for each
value of L is the one with PLα(L

MAX
2 ) a maximum probability. This corresponds to forming

pairs with pair angular momentum ℓp = 2ℓ− 1.
It is important to emphasize that Laughlin correlations occur only if V (R) (where R = 2ℓ−1)

is superharmonic at R = 1. By this we mean that V (R) increases faster than L2(L2 + 1) as L2

approaches its maximum value of L2 = 2ℓ− 1. This is not true of VQE(R), so we do not expect
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Figure 5. Pair interaction pseudopotentials as a function of relative angular momentum R for
electrons in the LL0 (a), LL1 (b) and for the QEs of the Laughlin ν = 1/3 state by Lee et al.[19]
(squares) and by Wojs et al. [20] (triangles). (See [16].)

Laughlin correlations among the CF QEs of the ν = 1/3 Laughlin state at νQE = 1/3. This
agrees with the numerical result of Sitko et al. [4] Now, however, we understand why the CF
hierarchy fails for a spin polarized system. There have been a number of papers [18] suggesting
that novel IQL states found by Pan et al. [17] (like the ν = 4/11 state) can be understood as a
second generation of CFs forming an L = 0 daughter state due to QE interactions. This can’t
be correct for a spin polarized system with νQE = 1/3, because VQE(R = 1) will not support
Laughlin correlations among the CF QEs.

5. Role of pairing in novel incompressible quantum liquid states
How can the novel IQL states observed by Pan et al. be explained if there is no second generation
of CFs formed by Laughlin correlations among the CFs of the first generation? We have shown
that if the pseudopotential describing the interaction of a pair of Fermions as a function of the
pair angular momentum L2 is subharmonic (i.e. rises with increasing L2 more slowly than the
harmonic pseudopotential VH), the Fermions tend to form pairs with pair angular momentum
L2 = 2ℓ − 1 instead of being Laughlin correlated. In Fig. 5, we display the pseudopotentials
V (0)(R) for electrons in the LL0, V (1)(R) for electrons in LL1, and VQE(R) for quasielectrons in
CF LL1, the first excited CF level.[19, 20] The pseudopotentials are displayed as a function of
R = 2ℓ−L2, the relative pair angular momentum. V (0)(R) is superharmonic at all values of R;
V (1)(R) is superharmonic for R > 3 but is harmonic or very weakly superharmonic for R = 1.
The QE pseudopotential VQE(R) is not even monotonic; it has strong maxima at R = 3 and 7,
and minima at R = 1 and 5.

Moore and Read [21] proposed a paired wave function for the observed IQL state at
ν = 2+ν1 = 5/2, the half-filled state of a spin polarized excited state LL (LL1), sitting above LL0
filled for both spin up and spin down states. The Moore-Read paired wave function (also called
the Pfaffian wave function) made use of a correlator based on conformal field theory. Greiter et
al. [22] showed that this Phaffian state is an exact solution to a special Hamiltonian, which is
large and repulsive when three electrons form single droplets (with total three particle angular
momentum L3 = 3ℓ − 3 (or relative three particle angular momentum R3 = 3ℓ − L3 = 3) and
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zero otherwise. For the Pfaffian wave function at ν1 = 1/2 in LL1, 2ℓ is given by 2ℓ = 2N − 3 in
agreement with numerical diagonalization results. It is worth noting that Laughlin-Jain states in
LL0 at filling factors ν1 = n/q < 1/2 occur when 2ℓ = ν−1N − (q+1−n). No even denominator
fractional fillings occur in the Laughlin-Jain sequence.

The simplest way of picturing paired states is to introduce a pair angular momentum
ℓp = 2ℓ − 1 and form Np = N/2 such pairs. The pairs cannot get too close to one another
without violating the Pauli principle. One would normally think of pairs of Fermions as Bosons,
but in two dimensional systems we can alter the particle statistics by using a Chern-Simons
transformation. We introduce a Fermion pair (FP) angular momentum ℓFP satisfying the
equation

2ℓFP = 2ℓp − γF(Np − 1). (7)

For a single pair ℓFP = 2ℓ−1. As Np increases the allowed values of the total angular momentum
are restricted to values less than or equal to 2ℓFP. The value of the constant γF is determined
by requiring that the FP filling factor be equal to unity when the single Fermion filling factor
has an appropriate value. For ℓp = 2ℓ−1, this value corresponds to single Fermion filling ν = 1.
Setting ν−1

FP = (2ℓFP + 1)/Np, ν
−1 = (2ℓ + 1)/N , and Np = N/2 gives ν−1

FP = 4ν−1 − 3, (i.e.
γF = 3), so that νFP = 1 when ν = 1. The factor of 4 multiplying ν−1 results from the pairs
having a charge of −2e, and Np being equal to N/2. This procedure allows the Fermion pairs
to be Laughlin correlated instead of the individual electrons being so. It predicts that an IQL
state at ν1 = 1/2 occurs when 2ℓ = 2N − 3 as found by Moore and Read.

We shall apply the same idea to the quasielectrons and quasiholes of the Laughlin ν = 1/3
state, and to quasiholes of the Laughlin-Jain ν = 2/5 state. QHs of ν = 1/3 state reside in CF
LL0, but both QEs of the ν = 1/3 state and QHs of the ν = 2/5 state reside in CF LL1.

The pseudopotentials of these quasiparticles are shown in Fig. 6 for a limited range of values
of the relative angular momentum R. Note that QEs of the ν = 1/3 state and QHs of the
ν = 2/5 state have maxima at R = 3 and minima at R = 1, while QHs of the ν = 1/3 state
has maxima at R = 1 and 5 and a minimum at R = 3. The behavior of QHs of the Laughlin
ν = 1/3 state leads to avoidance of R = 1 and 5, so we assume the formation of pairs in this
case with ℓp = 2ℓ− 3 instead of 2ℓ− 1.

If we assume that the QEs form pairs and treat the pairs as Fermions, then Eq. (7) gives
the relation between the effective FP angular momentum ℓFP, and the QE angular momentum
ℓ, and the relation between the effective FP filling factor νFP, and the QE filling factor νQE. If

Figure 6. The pseudopotentials VQE(R) and VQH(R) for (a) QEs of ν = 1/3 state, (b) QHs of
ν = 1/3, and (c) QHs of ν = 2/5 state. (See [16].)
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Table 1. Values of ν−1
FP = m for m = 3, 5,

7, and 9 and the resulting values of νQE,
νQH, and the electron filling factor that
they generate.

ν−1
FP 3 5 7 9

νQE 2/3 1/2 2/5 1/3
ν 5/13 3/8 7/19 4/11

νQH(CF LL1) 2/3 1/2 2/5 1/3
ν 4/11 3/8 8/21 5/13

Table 2. Values of νQH satisfying 1/3 >
νQH ≥ 1/5 and the resulting electron filling
factors ν for Laughlin correlated QP2s with
ν−1
FP =7, 9, 11, and 13.

ν−1
FP 7 9 11 13

νQH 2/7 1/4 2/9 1/5
ν 5/17 3/10 7/23 4/13

we take νFP = m−1, where m is an odd integer, we can obtain the value of νQE corresponding
to the Laughlin correlated state of FPs (pairs of quasielectrons with ℓp = 2ℓ − 1). Exactly the
same procedure can be applied to QHs in CF LL1 since VQE(R) and VQH(R) are qualitatively
similar at small values of R. Here we are assuming that VQE(R) and VQH(R) are dominated by
their short range behavior R ≤ 5. The QH pseudopotential is not as well determined for R > 5
because it requires larger N electron systems than we can treat numerically. The electron filling
factor is given by ν−1 = 2+ (1+ νQE)

−1 or by ν−1 = 2+ (2− νQH)
−1. This results in the values

of ν shown in Table 1 for 2/3 ≥ νQE ≥ 1/3.
The states generated at the values of νQE and νQH equal to 2/5 have not been observed.

Clear IQL states were observed by Pan et al.[17] at ν = 3/8 and ν = 4/11. A somehow weaker
IQL state at ν = 5/13 is also observed.

The daughter states generated by QPs in CF LL1 (QEs of the parent ν = 1/3 Laughlin state
or QHs of the parent ν = 2/5 Jain state) give rise to filling factors for the electron system with
ν > 1/3. QHs of the ν = 1/3 Laughlin state (residing in CF LL0) can also form daughter states,
and they result in an electron filling factor ν in the range 1/3 > ν ≥ 1/5. The pseudopotential
for these QHs is superharmonic at R = 1 and has a strong minimum at R = 3. Because of this,
if they form pairs, the pairs must have angular momentum ℓp = 2ℓ−3 (instead of ℓp = 2ℓ−1 for
QE pairs). Then, Eq.(7) must be modified. We replace 2ℓ−1 in the definition of 2ℓFP by 2ℓ−3,
and γF by γ̃F. The value of γ̃F is determined by requiring that νFP = 1 when νQH = 1/2. This
condition results from the fact that the pairs are formed by two QHs separated by two filled CF
states. The resulting value of γ̃F is 7, so that ν−1

FP = 4ν−1
QE − 3 is replaced by ν−1

FP = 4ν−1
QH − 7.

The QH daughter states resulting from Laughlin correlated QH2 (pairs of QHs of the ν = 1/3
state) and the electron filling factor satisfying ν−1 = 2 + (1− νQH)

−1 are given in Table 2.
All of the electron filling factors except ν = 7/19 and ν = 8/21 have been observed with

minima in ρxx (or plateaus in ρxy in many cases). Numerical diagonalization studies seem to
support the occurrence of IQL states. However, recent studies by Samkharadze et al.[23] at very
low temperatures raise questions about the even denominator fractions.

6. Summary and conclusions
In this paper we have reviewed exact numerical diagonalization of small systems within the
Hilbert subspace of a single partially occupied LL. The numerical results are thought of as
numerical experiments, and simple intuitive models fitting the numerical data are sought, to
better understand the underlying correlations. We describe calculations for N electrons confined
to a Haldane spherical surface, and present simple results at different values of the LL degeneracy
g = 2ℓ + 1. We demonstrate that Jain’s remarkable CF picture predicts not only the values of
2ℓ at which incompressible quantum liquid ground states occur for different values of N , but
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also predicts the angular momenta L of the lowest band of multiplets for any value of 2ℓ in a
very simple way. We emphasize that Jain’s CF picture is valid, not because of some magical
cancellations of Coulomb and Chern-Simons gauge interactions beyond mean-field, but because it
introduces Laughlin correlations by avoiding pair states with the lowest allowed relative angular
momentum R = 2ℓ − L2. The allowed angular momentum multiplets which avoid pair states
with R = 1 form a subset of the set of multiplets GNℓ(L) that can be formed from N Fermions
in a shell of angular momentum ℓ. This subset avoids the largest repulsion and has the lowest
energy. Adiabatic addition of Chern-Simons flux introduces Laughlin correlations without the
necessity of introducing an irrelevant mean-field energy scale h̄ωc = νh̄ωc.

Jain’s sequence of filled CF shells does not require an interaction between CF quasiparticles.
The incompressibility results from the energy required to create a QE-QH pair in the integrally
filled CF state. Haldane’s hierarchy of IQL states was based on the implicit assumption that the
residual interaction between QPs was sufficiently similar to the Coulomb interaction between
electrons in LL0 that the QPs would form their own Laughlin correlated daughter states.

The experiment of Pan et al. showed that neither Jain’s CF picture nor Haldane’s hierarchy
was the whole story. Residual pair interactions between QPs had been determined up to an
overall constant (unimportant for QP correlations). This pseudopotential VQP(L2) could be
used to determine the spectrum of daughter states containing NQP quasiparticles in a partially
filled QP shell. Qualitatively correct results can be expected when VQP(L2) is small compared
to the energy necessary to create a QE-QH pair in the IQL state. When the CF picture was
reapplied to the QPs, the Haldane hierarchy of all odd denominator fractions resulted. Numerical
calculations demonstrated that this CF hierarchy scheme of Laughlin correlated QPs at each level
did not always work, because VQP(L2) was not sufficiently similar to V0(L2), the pseudopotential
for electrons in LL0.

Our study of when the MF CF picture is valid justifies Jain’s ideas about integrally filled CF
QP levels, but shows that higher generations of CF states resulting from CF QP interactions
do not always support Laughlin correlations. Laughlin correlation among QPs is necessary to
obtain a higher generation of CFs.
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