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Abstract. We use the statistical properties of the entanglement spectrum of an interacting
disordered system, in order to track the localized to extended transition as function of interaction
strength and excitation energy expected from the many-body localization transition. We show
that such a transition is indeed observed, although an interesting saturation behavior in the
intermediate excitation energy is seen.

1. Introduction

Ideas and measures from the field of quantum information have been recently applied to
condensed mater physics [1, 2], mainly in order to identify quantum phase transition (QPT).
Entanglement of a many particle system in a pure state, divided into two regions A and B is
quantified by different measures (e.g., entanglement entropy, Rényi entropy and entanglement
spectrum (ES)) derived from the reduced density matrix of area A, ρA or B, ρB.

For example, the entanglement entropy measures the von-Neumann (Shannon) entropy of
the eigenvalues λA

i of ρA, such that: SA = −
∑

i λ
A
i lnλA

i . A different measure is known as the
ES corresponding a transformation of the eigenvalues εAi = − lnλA

i . Li and Haldane [3] showed
that the ES of a partitioned fractional quantum Hall state at ν = 5/2 state resembled the edge
excitation spectrum, and thus established a connection between the properties of the ES and
the topological order of this state. Expanding on these insights, several authors suggested that
the low-energy ES distribution shows some correspondence to the true many-body excitations
(MBE) of the partitioned segment (region A), for example the statistical properties of the MBE
and ES of disordered systems are the same [4, 5, 6]. The logic behind this proposal is that the
reduced density matrix of a region encodes the influence of the connection to the rest of the
system on the local MBE of the disconnected region. For low-lying excitations, the phase space
is rather low, and therefore the reduced density matrix corresponds rather well to the local MBE
spectrum.

Recently, the concept of many-body localization (MBL) [7] has emerged: Under certain
conditions the quantum many-body states of the system are localized in the Hilbert (Fock)
space resembling the celebrated Anderson localization [8] of a single particle states in a random
potential. MBL implies that even after an arbitrary long evolution a state of a decoupled system
remains dependent on the initial conditions. It means that time averaging does not result in
equipartition distribution and the entropy never reaches its thermodynamic value. In other
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words the time average is not equivalent to the ensemble average, i.e. the ergodic hypothesis
fails.

Numerical studies of many-body models such as the Heisenberg chains of spins 1

2
in a random

field [9] or one-dimensional Josephson arrays [10] provide evidence in favor of the MBL. Recently
there appeared a mathematical proof of the existence of MBL transition [11]. It is commonly
believed [12] that from the point of view of MBL a generic many-body system behaves similarly
to a one-particle problem on the Bethe lattice (random regular graph or disordered Cayley tree
[13]). This allows one to develop some intuition about the properties of the system not far from
the MBL transition

Here we use the statistical properties of the ES, in order to numerically study the MBL
transition. Essentially, we seek a transition from the localized statistics to extended statistics
as function of increased interaction strength, or excitation energy. This actually follow in the
footsteps of previous studies seeking a signature of the MBL in the MBE spectrum [9, 14, 15],
although it has the advantage of being able to address much larger systems due to the use of
ES instead of MBE spectrum. It is also connected to recent ideas on the connection between
the ES statistics and irreversability [16].

For the disordered single particle spectrum there is an extensive literature on the statistical
properties of the energy spectrum in the localized, critical, diffusive and chaotic regimes.
Different energy spectrum and wave function statistics, depending on whether the disordered
system has time reversal symmetry (Gaussian orthogonal ensemble (GOE)), broken time reversal
symmetry (Gaussian unitary statistics (GUE)), spin-orbit interactions (Gaussian symplectic
statistics (GSE)) [17, 18, 19]. The energy spectrum statistics can be used to identify the
Anderson localization transition [20].

The statistics of MBE in disordered interacting systems have an interesting twist. For non-
interacting many-particle systems the level spacing MBE distribution is expected to follow
the Poisson distribution for excitation energies above the second spacing, without depending
on the single-level distribution [21]. On the other hand, once repulsive interactions between
the particles are considered, a transition to the Wigner distribution for higher excitations is
observed [22, 23, 24, 25, 9]. This transition may be interpreted as a signature of the MBL
transition[9, 14, 15]. One difficulty in studying this transition is that exact diagonalization
needed to study excited states is limited to very small systems. Here, the Li and Haldanes’
conjecture can come to the rescue, since as we shall demonstrate below, one may extract the ES
up to a few tens of states. Thus, a significant number of low lying excitations of a rather large
many-body systems are numerically available.

Here we demonstrate that using the ES can actually provide us with some interesting insights
into the MBL transition. By monitoring the transition of the ES statistics as function of the
interaction strength and level number one can follow the degree to which the excitation is
localized or extended. Generally, one expects that the MBL mobility edge will occur at a
certain excitation energy corresponding to a level number. As interaction increases the mobility
edge should move down to the Fermi energy. Thus, for low-lying levels and weak interactions we
expect that the behavior of the ES statistics will follow Poisson, while for higher level numbers
or interaction strength it should follow GOE statistics. Thus, by tracking the crossover in the
ES statistics we hope to learn about the MBL transition.

2. Model

To study the MBL transition we consider a spinless 1D electrons system of size L with repulsive
nearest-neighbor interactions and on-site disordered potential. The Hamiltonian is given by:

H =
L∑

j=1

ǫj ĉ
†
j ĉj − t

L−1∑

j=1

(ĉ†j ĉj+1 + h.c.) + U
L−1∑

j=1

(ĉ†j ĉj −
1

2
)(ĉ†j+1ĉj+1 −

1

2
), (1)
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Figure 1. The average ES spacing as function of the level number n
for different values of interaction strengths U . The dashed vertical lines
correspond to n = 1, 2, 4, 7, 12, 19 for which larger spacings are expected
[28].

where ǫj is the on-site energy drawn from a uniform distribution [−W/2,W/2], ĉ†j is the creation
operator of an electron at site j, and t = 1 is the hopping matrix element. The repulsive
interaction strength is depicted by U ≥ 0, and a positive background is considered.

The density matrix renormalization group (DMRG) [26, 27]. is a very accurate numerical
method for calculating the ground state of disordered interacting 1D system and for the
calculation of the reduced density matrix. We calculate the eigenvalues of ρA for a system
of length L = 700 at half-filling (i.e., the number of electron in the system is N = L/2 = 350)
and different values of LA = 100, 110, . . . , L − 100, for at least 20 realizations of disorder. The
disorder strength W = 3.5 corresponds to a localization length ξ0 ≈ 105/W 2 ∼ 8.5. The ES is
calculated using the relation εAi = − lnλA

i .

3. Entanglement spectrum level statistics

The first step in studying the statistical properties of the ES, is to realize that when one
bisects the system into regions A and B the number of particles in each region NA and
NB = N − NA are still a good quantum number. Since reduced density matrix eigenvalues
of different values of NA do not couple, one can denote the eigenvalues as, λNA

n , which translate
into the ES by [3]: εNA

n = − ln(λNA
n ). Thus, for each number sector NA, the spacing of the ES,

∆NA
n = εNA

n+1 − εNA
n , and the average over different lengths LA, number of particles in the region

NA and realizations depicted by 〈∆n〉 may be calculated. The results for different strength
of interaction U are presented in Fig. 1. Since 〈∆n〉 should correspond to the many-particle
level spacing, it is expected to fall of exponentially as function of n, which is indeed seen.
Another interesting feature is the appearance for the non-interacting case of peaks (i.e., larger
spacings) for n = 1, 2, 4, 7, 12, 19. As discussed elsewhere [28], the origin of these peaks in the
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Figure 2. Average rn as function of level number for different strengths of
interaction U . The expected value for rn in the localized (Poisson) regime is
indicated by the heavy dashed black line and in the extended (GOE) regime
by a continuous heavy black line.

non-interacting case is essentially combinatoric, where peaks appear when the only possibility
of reaching the next excitation energy is by a single-electron transition to a higher energy,
contrasted to transitions of several electron, some up some down. These existence of such peaks
are an indication of MBL, since they cannot survive the coupling between the many-particle
states in the extended states. Indeed, as interaction increase the peaks of ∆n are erased, and
for the highest interactions (U = 2.4) only the lowest peaks (at n = 1, 2) remain. This is in
line with our expectations that as interactions increase the mobility edge goes down, and the
localized regime shrinks to the immediate vicinity of the Fermi energy. Nevertheless, this is not
an exact method to extract the mobility edge.

In order to get a more quantitative estimation of the localized-extended transition we shall use
a statistical measure of the behavior of the spacings between successive ES energies. Following
Ref. [15] we define a dimensionless parameter rn that captures the correlations between
successive gaps in the spectrum:

〈rn〉 =
min(∆NA

n ,∆NA

n+1)

max(∆NA
n ,∆NA

n+1)
, (2)

where 〈. . .〉 stands for average over different values of NA, LA and realizations of disorder. For
the Poisson statistics, rn = 2 ln(2)− 1 ∼ 0.386, while for the GOE (Wigner) statistics rn ∼ .53.
The numerical results of rn as function of the level number n for different strengths of interaction
U are presented in Fig. 2. Let’s begin by discussing the non-interacting case U = 0. Here we
expect that since ξ ≪ L all the excited states will show Poisson statistics, i.e., rn ∼ 0.386.
Indeed, except for the first few values of rn (especially r2), which correspond to large level
spacings peaks seen in Fig. 1, the values of rn corresponds very well to the expected GOE value.
As U increases, rn also rises, climbing closer to the GOE value of rn ∼ .53. For lower values
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of interaction (U < 1), the larger n is (i.e., the higher the excitation energy) the larger is the
increase in rn. This is in line with the expectation from a mobility edge at higher energy, and
with it moving down in energy as interaction increases. At higher interactions (U > 1), rn for
higher excitations (n > 10) saturates at a value close, but significantly below the GOE value,
while rn for low excitation (n < 10) shoots up, reaching the GOE value around U = 2. Thus
for the highest U we have studied, there is an intermediate range of excitations (10 < n < 30)
for which the statistics of rn is not quite GOE although it fits very well anywhere else.

4. Discussion

Thus, there is a clear crossover from the Poisson to GOE statistics for the ES statistics in line
with the MBL transition. Nevertheless, in order to prove a QPT, we will need to demonstrate
finite size behavior corresponding to a mobility edge. There is also the question of the curious
saturation of rn at intermediate excitation numbers. For the ground state of a disordered
interacting system interactions drive the system to stronger localization with shorter localization
length [29]. On the other hand for the first few excited state, metallic behavior is seen for strong
enough interaction [30]. Thus, one naively would expect this metallic behavior to continue for
higher excitation, which obviously from Fig. 2 does not occur. This might be connected to the
non-ergodic behavior expected in the MBL transition [31], but this needs further study.
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