
Phase transition to the

Fulde–Ferrell–Larkin–Ovchinnikov state in a

quasi-one-dimensional organic superconductor with

anion order

Nobumi Miyawaki1, Hiroshi Shimahara2

1 Graduate School of Integrated Arts and Sciences, Hiroshima University, Kagamiyama 1-7-1,
Higashi-Hiroshima 739-8521, Japan
2 Department of Quantum Matter Science, ADSM, Hiroshima University, Kagamiyama 1-3-1,
Higashi-Hiroshima 739-8530, Japan

E-mail: nmiyawaki@hiroshima-u.ac.jp

Abstract. A theoretical study is presented on the effect of anion order on the phase transition
from the normal state to a Fulde–Ferrell–Larkin–Ovchinnikov superconducting state in a quasi-
one-dimensional organic superconductor (TMTSF)2ClO4. The temperature dependence of the
upper critical field Hc2(T ) is examined. In the absence of anion order, the Hc2(T ) curve exhibits
a one- to two-dimensional crossover with decreasing temperature T . For a sufficiently large anion
order parameter, the dimensional crossover disappears and then a kink appears in the Hc2(T )
curve.

1. Introduction
The realization of the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state has been suggested in
low-dimensional organic superconductors [1, 2]. The low-dimensionality is advantageous to the
FFLO state because the upper critical field Hc2 is not so strongly reduced by the orbital pair-
breaking effect when a magnetic field is applied parallel to the conductive layer. Moreover,
anisotropy of the Fermi surface helps stabilize the FFLO state [3, 4].

Recently, Yonezawa et al. reported measurements of the superconducting onset temperature
T onset
c of a quasi-one-dimensional (Q1D) organic superconductor (TMTSF)2ClO4 in magnetic

fields H aligned with the conductive plane. They found a characteristic field-direction
dependence of T onset

c suggestive of the transition to the FFLO superconducting phase [5]. Lebed
showed that the observed Hc2 in H parallel to the b′ axis (parallel to the conducting ab plane
and perpendicular to the most conductive a axis) agrees in magnitude with a theory in which
the FFLO state with d-wave pairing symmetry is assumed [6], Croitoru et al. demonstrated how
the orbital magnetism in the FFLO state causes the in-plane anisotropy of T onset

c [7]. Miyawaki
and Shimahara examined the temperature dependence of Hc2 with a focus on the effect of the
anisotropic Fermi surface and revealed that a novel dimensional crossover of the Hc2(T ) curve
appears for q ∥ a [8], where q is the center-of-mass momentum of Cooper pairs and a is the
lattice vector of the most conducting chain of (TMTSF)2ClO4.
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In this paper, the previous theory [8] is extended to investigate Hc2(T ) in (TMTSF)2ClO4

on the basis of a more realistic band structure. Specifically, the effect of anion (ClO−
4 ) order

[9], which is known to cause a splitting of the Q1D Fermi surface, is taken into account. It is
shown that the finite anion gap ∆AO gives rise to a qualitative difference in the temperature
dependence of the FFLO upper critical field Hc2.

2. Model and method
We consider the Q1D tight-binding Hamiltonian [10]

HAO = −
∑
i,j,σ

tija
†
iσajσ +

∑
i,σ

ϵia
†
iσaiσ −

∑
i,σ

(µ+ σµeH)a†iσaiσ, (1)

where µ is the chemical potential and σµeH (σ = ±) is the Zeeman energy. In this model,
two kinds of chains (A and B) are defined in the a direction. There is an energy difference
between the A- and B-site due to the anion order. This energy difference is accounted for by
the parameter

ϵi =

{
∆AO for i ∈ A

−∆AO for i ∈ B
. (2)

For tij , only the nearest neighbor hopping is taken into account, and we define tij = ta (tb) for
the intra-chain (inter-chain) nearest neighbor hopping.

Diagonalizing this Hamiltonian, we obtain the dispersion [10, 11, 12]

ξsσ(k,H) = −2tacos kx − s
√

(2tbcos ky)2 +∆AO
2 − µ− σµeH, (3)

where the momentum kx (ky) is scaled by the inverse of the lattice constant a (b). There are
two electron bands in the Brillouin zone |ky| < π/2, corresponding to s = ±. In the organic
conductor (TMTSF)2ClO4, the hole number per site is 0.5 and thus the chemical potential µ
is determined by the 1/4-filled condition. The anion gap ∆AO is suggested to be 25 meV by
magnetoresistance measurements [11]. Another estimation based on the Hückel method gives
∆AO ∼ 100 meV [13]. From recent first-principles calculations, however, ∆AO has been claimed
to be nearly zero [14] or ∼14 meV [15]. We thus treat ∆AO as a parameter that is less than
ta ∼ 300 meV.

In the superconducting state, we take into account only intra-band Cooper pairing. We then
obtain the following Bogoliubov-quasiparticle energy in an FFLO state with the superconducting
gap function ∆(r,k) = ∆(k)eiq·r:

Es
kσ = σζs + Es

k, (4)

where

Es
k =

√
ξsσ(k, 0)

2 +∆(k)2, (5)

ζs =
1

2
vs
F (k) · q − µeH. (6)

In Eq. (6), vs
F (k) is the Fermi velocity for the s band.

The gap ∆(k) is determined self-consistently from

∆(k′) =
1

N

∑
s=±

∑
k

V (k′,k)
1− f(Es

k↑)− f(Es
k↓)

2Es
k

∆(k), (7)
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where V (k′,k) = V γ(k′)γ(k) is the pairing interaction. According to Ref. [6], we assume
a d-wave symmetry of the gap, i.e., ∆(k) = ∆0γ(k) with γ(k) =

√
2 cos ky. The normal–

superconducting phase boundary is determined by linearizing the above gap equation with
respect to ∆0. From the linearized gap equation, we can obtain

ln
T

Tc
(0)

= −
∑
s=±

∫ π/2

−π/2

dky
2π

ρs(0, ky)γ
2(ky)

Nd(0)
sinh2

βζs

2

∫ ∞

0
dy ln y

×

[
2 sinh2 y[

cosh2 y + sinh2(βζs/2)
]2 − 1

cosh2 y
[
cosh2 y + sinh2(βζs/2)

]] (8)

with

Nd(0) =
∑
s=±

∫ π/2

−π/2

dky
2π

ρs(0, ky)γ
2(ky). (9)

Here, ρs(0, ky) is the Fermi surface value of the density of states defined through

1

N

∑
k

(· · · ) =
∫

dξ
∑
s=±

∫ π/2

−π/2

dky
2π

ρs(ξ, ky)(· · · ). (10)

Equation (8) determines Hc2 as a function of (T, q). An optimum value of q is fixed such that
Hc2 is maximized at a given temperature T , leading to an Hc2(T ) phase boundary.

The optimum q occurs when it is directed along a, as expected from the Fermi-surface nesting
consideration [3, 4, 8, 16]. For the optimum value of q = |q|, there are two possibilities associated
with the nesting vectors q+ and q− for the outer (s = +) and inner (s = −) Fermi surfaces (Fig.
1). In fact, when we plot Hc2 as a function of q, we find that the Hc2(q) curve has two local
maxima at low temperatures, though it has a single maximum at high temperatures. We shall
denote the critical fields at the two local maxima by H±

c2.

3. Results
Figure 2 shows plots of the numerical results of H+

c2(T ). The FFLO state appears at low

temperatures below T ∗ ≈ 0.56T
(0)
c , where T

(0)
c is the transition temperature at H = 0. When

∆AO = 0 (black solid line), H+
c2(T ) curve exhibits a characteristic temperature dependence. Just

below T ∗, theH+
c2(T ) curve has a positive curvature as in the case of the 1D system (dashed line);

however, as temperature decreases, the curvature becomes negative and a shoulder appears. As
temperature decreases further, the curve exhibits an upturn similar to the 2D system (dotted
line). This one- to two-dimensional crossover is typical for Q1D systems [8]. As∆AO is increased,
the magnitude of H+

c2(T ) decreases, and the crossover behavior becomes less pronounced for
∆AO

>∼ 0.3ta. This is because the Fermi-surface mismatch between the up- and down-spin
Fermi surfaces for s = − at the nesting vector q+ is larger for larger ∆AO.

When ∆AO = 0, the critical field H+
c2(T ) is larger than H−

c2(T ) throughout the entire
temperature region. However, numerical calculations show that the reduction of H−

c2(T ) by
a finite ∆AO is less significant than that of H+

c2(T ). This is because the density of states
ρ−(0, ky) is larger than ρ+(0, ky) on the nested Fermi surface. As a result, for ∆AO

>∼ 0.3ta,
the critical field H−

c2(T ) becomes larger than H+
c2(T ) at low temperatures. This means that the

upper critical field Hc2(T ) observed actually has a kink in its temperature dependence (Fig. 3).
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Figure 1. Fermi surfaces for (a),(c) ∆AO = 0 and (b),(d) ∆AO = 0.3ta. Red and black solid
curves are the Fermi surfaces of minority-spin and majority-spin electrons, respectively. The red
dotted curves represent the minority-spin Fermi surface shifted by the nesting vector q+ (q−)
for the outer (inner) Fermi surface (where the shifted Fermi surface is shown only for the kx > 0
branch).

4. Conclusion
We have examined how the FFLO upper critical field Hc2(T ) in a Q1D superconductor
(TMTSF)2ClO4 is modified depending on the anion order. In the absence of the anion gap ∆AO,
theHc2(T ) curve exhibits a dimensional crossover typical for Q1D systems. For∆AO

>∼ 0.3ta, the
dimensional crossover disappears and a kink appears in the Hc2(T ) curve at a low temperature.
If the anion gap ∆AO is large enough, a kink of Hc2(T ) should be observed in (TMTSF)2ClO4.
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Figure 2. Temperature dependence of µeH
+
c2/T

(0)
c for tb = 0.1ta and ∆AO = 0, 0.1ta, 0.2ta,

0.3ta, and 0.4ta. The temperature T is scaled by T
(0)
c = Tc(H = 0). For reference, the results

for a 1D superconductor (tb = 0 and ∆AO = 0) and for a 2D dx2−y2-wave superconductor
(with a cylindrical Fermi surface) are plotted by dashed and dotted lines, respectively. The

inset shows the T dependence of the optimum v+F0q/T
(0)
c . Here, v+F0 denotes the Fermi velocity

|v+F (kx, ky = 0)|.
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Figure 3. Phase diagram for tb = 0.1ta and ∆AO = 0.3ta. The solid line corresponds to H+
c2

and the dashed line to H−
c2. The inset shows the T dependence of the optimum v+F0q/T

(0)
c . The

phase boundary between the normal and superconducting states corresponds to the larger value

of H+
c2 and H−

c2. The upper critical fields H±
c2 cross each other at T ≈ 0.11T

(0)
c , resulting in a

kink in the phase boundary.
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