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Abstract. The notion of derivative is limited only to the idealization of linear growth. The
paper presents a formal regularization procedure for the derivatives of functions using the
fractional velocity, i.e. a local fractional derivation operation. The approach can be applied
in strongly non-linear or fractal settings, such as singular functions, Brownian motion, quantum
paths, etc.

1. Fractional approach to derivation

A central notion of physics is the rate of change. It can be argued that this perception inspired
Newton and Leibniz to develop the apparatus of differential calculus. However, the notion of
derivative is limited only to the idealization of linear growth. Classical physical variables, such
as velocity or acceleration, are considered to be differentiable functions of position. On the
other hand, quantum mechanical paths were found to be non-differentiable and stochastic in
simulations [2]. The relaxation of the differentiability assumption could open new avenues in
describing physical phenomena, for example, using the scale relativity theory developed by
Nottale [1], which assumes fractality of quantum-mechanical trajectories. Cherbit [4] introduced
the notion of « fractional (fractal) velocity as the limit of the fractional difference quotient. His
main application was the study of fractal phenomena and physical processes for which the
instantaneous velocity was not well defined. This concept can be extended to mixed-orders as
follows [5, 6] :

Definition 1 (Mixed-order velocity). Define the fractional velocity of mized order n + [ of
function f(x) € C" as

U1+Bf (33‘) — (:l:l)n+1(n + 1)! 15% f(x + 6)6;—5;71(.%, :I:e)

(1)

where n € N; e > 0,0 < 8 < 1 are real parameters and T,(z,€) is the Taylor polynomial
" (k)

To(w,e) = f(2) + 3 et
k=1

Some of the most peculiar properties of a-velocity are that it takes discrete values, it is
discontinuous and non-vanishing only at points where the usual derivative is unbounded[3, 5].

The fractional velocity is able to characterize growth of functions varying on fractal sets.
This can be exemplified by its application to singular functions, such as the Cantor’s function.
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Example 1. Cantor’s function obeys the functional equation

0, =0
%C(?;x), 0<z<1/3
C(z) = 7 1/3<x<2/3
3+30Bx-2), 2/3<z<1
1, r=1
Therefore v C (x) =1 if x belongs to the Cantor set C1 3 and v{C (x) =0 otherwise for o = Egg

The Cantor’s set in turn is given by Cy 3 = {x cx=0udy...dy, de{0, 2}} in ternary number
representation.

2. Regularized Taylor expansions

In other applications it transpires that fractional velocity acts as an auxiliary object with
regard to integer-order derivatives. Paradoxically, the irregularity of the fractional velocity can
be used to regularize the usual derivatives at singular points. This can be demonstrated in the
regularization procedure for the derivatives of Holder functions, which allows for removal of the
weak singularity in the derivative caused by strong non-linearities:

Definition 2. Regularized derivative of a function is defined as:
d r* AE[f)(w) = vlf (z)

g @)=l c

We will require as usual that the forward and backward regularized derivatives be equal for a
uniformly continuous function.

Then the following statement holds: Let f(t,w) € C? be composition with w(z), a Holder
function H/9 at z, then
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where g
qQt _ 7: +e
[ = Tim (v, 0] (2))
is the fractal g¢-adic (co-)variation. Possible applications of presented approach are

regularizations of quantum mechanical paths and Brownian motion trajectories, which are
Holder 1/2.
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