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Abstract. We compute the corrections to the Schwarzschild metric necessary to reproduce
the Hawking temperature derived from a Generalized Uncertainty Principle (GUP), so that the
GUP deformation parameter is directly linked to the deformation of the metric. Using this
modified Schwarzschild metric, we compute corrections to the standard General Relativistic
predictions for the perihelion precession for planets in the solar system, and for binary pulsars.
This analysis allows us to set bounds for the GUP deformation parameter from well-known
astronomical measurements.

1. Introduction
Research on generalizations of the uncertainty principle of quantum mechanics has nowadays
a long history [1]. One of the main lines of investigation focuses on understanding how the
Heisenberg Uncertainty Principle (HUP) should be modified once gravity is taken into account.
Given the pivotal rôle played by gravitation in these arguments, it is not surprising that the
most relevant modifications to the HUP have been proposed in string theory, loop quantum
gravity, deformed special relativity, and studies of black hole physics [2, 3, 4, 5, 6, 7], just to
mention some of the most notable frameworks.

An interesting novelty, emerged during the last decade or so, is a lively debate on the
measurable features of various kinds of Generalized Uncertainty Principles (GUPs). From more
theoretical shores, the discussion has therefore landed on the ground of experimental predictions
about the size of these modifications, and several experiments have been proposed to test GUPs
in the laboratory. Among the more elaborated proposals are those, for example, of the groups
of Brukner, Cerdonio, Bonaldi [8, 9, 10].

Studies that aim at putting bounds on the dimensionless deforming parameter of the GUP,
heretofore denoted by β, date back at least to Brau [11], and can be roughly divided into three
different categories (actually, only two, as we will see). In the first group one finds papers such
as those of Brau [11], Vagenas [29], Nozari [13], which use a specific (in general, non linear)
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representation of the operators in the deformed fundamental commutator 1

[X̂, P̂ ] = i ~(1 + β P̂ 2/m2
p) , (1)

in order to compute corrections to quantum mechanical predictions, such as energy shifts in the
spectrum of the hydrogen atom, or to the Lamb shift, the Landau levels, Scanning Tunneling
Microscope, charmonium levels, etc. The bounds so obtained on β are quite stringent, but the
drawback of this approach is a potentially strong dependence of the expected shifts on the specific
(non linear) representation chosen for the operators X̂ and P̂ in the fundamental commutator.

In the second group, we can find the works of, e.g., Chang [14], Nozari and Pedram [15],
where a deformation of classical Newtonian mechanics is introduced by modifying the standard
Poisson brackets in a way that resembles the quantum commutator,

[x̂, p̂] = i ~
(
1 + β0 p̂

2
)

⇒ {X,P} =
(
1 + β0 P

2
)
, (2)

where β0 = β/m2
p. In particular, Chang in Ref. [14] computes the precession of the perihelion of

Mercury directly from this GUP-deformed Newtonian mechanics, and interprets it as an extra
contribution to the well known precession of 43”/century due to General Relativity (GR). He
then compares this global result with the observational data, and the very accurate agreement
between the GR prediction and observations leaves Chang not much room for possible extra
contributions to the precession. In fact, he obtains the tremendously small bound β . 10−66. A
problem with this approach is that a GUP-deformed Newtonian mechanics is simply superposed
linearly to the usual GR theory. One may argue that a modification of GR at order β should
likewise be considered, but this is however omitted in Ref. [14]. In other words, it is not
clear why the two structures, GR and GUP-modified Newtonian mechanics, should coexist
independently, and why the two different precession errors add into a final single precession
angle. Most important, as a matter of fact, in the limit β → 0, Ref. [14] recovers only the
Newtonian mechanics but not GR, and GR corrections must be added as an extra structure.
Clearly, the physical relevance of this approach and the bound that follows for β, remain therefore
questionable.

Finally, a third group of works on the evaluation of β contains, for example, papers by
Ghosh [16] and Pramanik [17]. They use a covariant formalism, first defined in Minkowski space,
with the metric ηµν = diag(1,−1,−1,−1), which can be easily generalized to curved space-times
via the standard procedure ηµν → gµν . These papers should however be considered as belonging
to the second group. In fact, a closer look reveals that they also start from a deformation of
classical Poisson brackets, although posited in covariant form. From the deformed covariant
Poisson brackets, they obtain interesting consequences, like a β-deformed geodesic equation,
which leads to a violation of the Equivalence Principle. They do not deform the field equations
or the metric. In Ref.[18], however, we show that this violation of the Equivalence Principle
is completely due to the postulate of deformed Poisson brackets, and has nothing to do with
the covariant formalism, or with a deformation of the GR field equations or solutions, or of the
geodesic equation. Nonetheless, the Ghosh–Pramanik formalism remains covariant when β → 0
and reproduces standard GR results in the limit β → 0 (this differs, in general, from the results
obtained by papers in the second group).

The novelties of our approach, when compared with the previous ones, are many and various.
The main point is to start directly from a quantum mechanical effect, the Hawking evaporation,
for which the GUP is necessarily relevant, rather than postulating specific representations of
canonical operators or modifications of the classical equations of motion. We connect the

1 We shall work with c = kB = 1, but explicitly show the Newton constant GN and Planck constant ~. We also
recall that the Planck length is defined as ℓ2p = GN ~/c3, the Planck energy as Ep ℓp = ~ c/2, and the Planck mass
as mp = Ep/c

2, so that GN = ℓp/2mp and ~ = 2 ℓp mp.
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deformation of the Schwarzschild metric directly to the uncertainty relation, without relying on
a specific representation of commutators. We leave the Poisson brackets and classical Newtonian
mechanics untouched, and recover GR, and standard quantum mechanics, in the limit β → 0. In
particular, we preserve the Equivalence Principle, and the equation of motion of a test particle is
still given by the standard geodesic equation. In the present work, this is obtained by deforming
a specific solution of the standard GR field equations, namely the Schwarzschild metric.

2. Deforming the Schwarzschild metric
In this section, we start from a known way of deriving the Hawking temperature directly from
the metric of a black hole, and then show how the GUP modifies the Hawking temperature.
These two steps will pave the road to a deformation of the Schwarzschild metric, constructed so
as to reproduce the GUP-modified Hawking temperature. We consider here a space-time with
a metric that locally has the form

ds2 = gµνdx
µdxν = F (r) dt2 − F (r)−1 dr2 − r2 dΩ2, (3)

where dΩ2 = dθ2 + sin2 θ dϕ2. The horizons (if any), are located at the positive zeros of the
function F (r) (see, for example, Ref. [19]).

We loosely follow a standard derivation, as for example that in Ref. [20]. Suppose r = rH is
an horizon, so that F (rH) = 0, and consider r ≥ rH. Then, a quantized scalar field outside the
horizon lives in a heat bath with temperature

T = ~
F ′(rH)

4π
. (4)

Therefore the temperature of the black hole horizon as seen by a distant observer is in general
given by formula (4). In particular, for a Schwarzschild black hole the function F (r) is given by
(1 − 2GNM/r), the horizon is at rH = 2GNM , and we get TH = ~/(8πGNM) , which is the
well-known Hawking temperature.

We now give here a derivation of the mass-temperature relation starting directly from the
uncertainty relations. The most common form of deformation of the Heisenberg uncertainty
relation (and the form of GUP that we are going to study in this paper) is without doubt the
following

∆x∆p ≥ ~
2

(
1 + β

4 ℓ2p
~2

∆p 2

)
=

~
2

[
1 + β

(
∆p

mp

)2
]

. (5)

The dimensionless parameter β is usually assumed to be of order one, in the most common
quantum gravity formulations. Following the arguments of Refs. [21, 22, 23, 24, 25, 26, 27], we
promptly arrive to translate relation (5) into a mass-temperature relation for a Schwarzschild
black hole

M =
~

8πGN T
+ β

T

2π
. (6)

To zero order in β, we recover the usual Hawking formula. Let us note that in this work we
assume that the correction induced by the GUP has a thermal character, and therefore it can
be cast in the form of a shift of the Hawking temperature. Of course, there are also different
approaches (see e.g. Ref. [28]), where the corrections do not respect the exact thermality of the
spectrum, and thus need not be reducible to a simple shift of the temperature.

EmQM15: Emergent Quantum Mechanics 2015 IOP Publishing
Journal of Physics: Conference Series 701 (2016) 012016 doi:10.1088/1742-6596/701/1/012016

3



Figure 1. Elements of the ellipse used in the text for the calculations of precession of planetary
orbits.

We can legitimately wonder what kind of (deformed) metric would predict a Hawking
temperature like the one inferred from the GUP relation (6), for a given β. Since we are
interested only in small corrections to the Hawking formula, we can consider a deformation of
the Schwarzschild metric of the kind

F (r) = 1− 2GNM

r
+ ε

G2
NM2

r2
, (7)

and we shall look for the lowest order correction in ε (for a different ansatz on F (r) recently
introduced, see Ref. [29]). We see that Eq.(7) is actually the simplest mathematical form, if one
supposes that the metric can be expanded in powers of 1/r. This is nothing else than the well
known Eddington–Robertson expansion of a spherically symmetric metric. Note however that,
since RH/r ∼ 10−5 on the surface of the Sun (where RH = 2GNM), the term proportional to
ε can still be considered small even if ε is relatively large. The temperature predicted by this
deformed Schwarzschild metric is

T (ε) = ~
F ′(rH)

4π
=

~
2πGNM

√
1− ε(

1 +
√
1− ε

)2 , (8)

which must coincide with the temperature T (β) predicted by Eq. (6), for any given β. This
yields the following relation between β and ε,

β(ε) = −π2 GNM2

~
ε2

1− ε
. (9)

For |ε| ≪ 1, to the lowest order in ε, we thus get β = −π2M2ε2/(4m2
p) , where we notice

that both β and ε are dimensionless. It is now of great interest to observe that Eq. (9) forces
us to admit that β < 0, since ε ≤ 1. Although quite unexpected, this might be a suggestion
of fundamental importance. It seems that a metric is able to reproduce the GUP-deformed
Hawking temperature only if the deforming parameter β is negative. We already encountered a
situation like this when we studied the uncertainty relation formulated on a crystal lattice [30].
This could be a further hint that the physical space-time has actually a lattice or granular
structure at the level of the Planck scale.

3. Perihelion precession by deformed Schwarzschild metric
Having established a connection between the GUP parameter β and the deformation ε of the
Schwarzschild metric, we are now in a position to compute the physical (possible observable)
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consequences of such a deformed metric. Here, we consider a particle bound in a orbit around
a massive body, typically a planet around the Sun. Again, we roughly follow the treatment of
Ref. [31]. The relevant geometrical parameters for an elliptic orbit in a polar coordinates system,
with the radial coordinate r which at aphelia and perihelia takes, respectively, the maximum
value r+ and minimum value r−, are the eccentricity e, the semi-major axis a, and the semilatus
rectum L (see Fig.1). These geometrical parameters are related by

r± = (1± e) a (10)

L = (1− e2) a (11)

2

L
=

1

r+
+

1

r−
. (12)

The angle swept out by the position vector when it increases from r− to r is then given by the
integral

ϕ(r)− ϕ(r−) =

∫ r

r−

r2−
(

1
F (r) −

1
F (r−)

)
− r2+

(
1

F (r) −
1

F (r+)

)
r2−r

2
+

(
1

F (r+) −
1

F (r−)

) − 1

r2

−1/2

dr

r2
√

F (r)
. (13)

The total change in ϕ at every lap is just twice the change as r increases from r− to r+. This
would equal 2π if the orbit were a closed ellipse, so the total orbital precession in each revolution
is given by

∆ϕ = 2 |ϕ(r+)− ϕ(r−)| − 2π . (14)

We expand the integrand before integrating, and the small parameter is given by RH/r−, or
better RH/L. Finally the total precession after a single lap, to first order in RH/L, is given by

∆ϕ ≃ 6πGNM

L

(
1− ε

6

)
, (15)

which, of course, reproduces the usual GR prediction in the limit ε → 0. This relation should
now be compared with known observational data.

4. Solar system data
The perihelion precession for Mercury is by far the best known and measured GR precession in
the Solar system. Referring to Ref. [32] for the latest most accurate and comprehensive data,
we can report the relation

⟨ω̇⟩ = 6πGNM

L

[
1

3
(2 + 2γ − β̄) + 3 · 10−4 J2

10−7
)

]
, (16)

where ⟨ω̇⟩ is the measured perihelion shift, J2 a dimensionless measure of the quadrupole moment
of the Sun, and γ and β̄ are the usual Eddington-Robertson expansion parameters. The latest
data from helioseismology give J2 = (2.2±0.1) ·10−7. The measured perihelion shift of Mercury
is known to about 0.1% from radar observations of Mercury between 1966 and 1990 [33]. The
solar oblateness effect due to the quadrupole moment is then smaller than the observational
error, so it can be neglected. Substituting standard orbital elements and physical constants for
Mercury and the Sun, we obtain

⟨ω̇⟩ =
(
1 +

2γ − β̄ − 1

3

)
42.98”/century , (17)
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where we can place a bound of |2 γ − β̄ − 1| . 3 · 10−3. Comparing with ∆ϕ from Eq. (15), we
get |ε| . 6 · 10−3 , which, replaced in Eq. (9), yields the lower bound

|β| = M2

4m2
p

π2 ε2

1− ε
. 3 · 1072 . (18)

We can also consider the most recent data from the Messenger spacecraft [34], which orbited
Mercury in 2011-2013, and improved very much the knowledge of its orbit. Then we can push
this bound even lower, to |2γ − β̄ − 1| . 7.8 · 10−5, although the knowledge of J2 would have
to improve simultaneously. If just the error in |2γ − β̄ − 1| were taken into account, this would
imply |ε| = 2

∣∣2γ − β̄ − 1
∣∣ . 1.56 · 10−4 and therefore

|β| . 2 · 1069 . (19)

But of course this limit should not be considered completely reliable in this contest, since the
less accurate bound on J2 cannot be brutally neglected, at least in principle. Once again the
perihelion shift appears to be one of the most precise tests of GR, a true GR effect not present
at all in Newtonian gravity (as it is well known).
We can try to put this limits on a firmer ground by looking for even larger effects of this kind
in Binary Pulsars.

5. Pulsar PRS B 1913+16 data
Clearly, binary pulsars are very good candidates for measurements of periastron shifts. Among
the known pulsar systems, the best tested pair is the Pulsar PRS B 1913+16. Discovered in
1974 by Hulse and Taylor, this system has become, after 40 years of observations, one of the
most reliable celestial laboratories for precise GR measurements. For example, prediction of GR
for the period decay rate due to emission of gravitational waves coincides with the measured
value up to an error on the 14th decimal figure.

The state of the art on this system is described in Ref. [35]. In Table 1, we report the orbital
parameters of interest for us. The parameters e and Pb are called Keplerian parameters, since
they are well defined quantities also in the Newtonian theory. On the contrary, ⟨ω̇⟩, γ, Ṗb are
known as Damour–Deruelle post-Keplerian parameters [36], quantities typically well defined in
GR only. In Ref. [37], Taylor and Weisberg have shown that each GR post-Keplerian parameter
can be expressed in terms of the Keplerian parameters and of the unknown masses of the pulsar
and its companion, m1, m2. The GR theoretical prediction of the periastron shift, ⟨ω̇⟩GR, can
be compared with the observed value of ⟨ω̇⟩Obs again given in Table 1. The relative error can
then be defined as ε̃ by the relation

⟨ω̇⟩GR(1 + ε̃) = ⟨ω̇⟩Obs . (20)

Parameter Value

e (Eccentricity) . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6171334(5)
Pb (days) (Orbital period) . . . . . . . . . . . . . . . . 0.322997448911(4)
⟨ω̇⟩ (deg/year) (Periastron shift) . . . . . . . . . . 4.226598(5)
γ (s) (Time dilation-gravitational redshift) 4.2992(8)× 10−3

Ṗb (s/s) (Orbital period decay) . . . . . . . . . . . −2.423(1)× 10−12

Table 1. Orbital parameters of PRS B 1913+16 [35]. Figures in parentheses represent estimated
uncertainties in the last quoted digit.

EmQM15: Emergent Quantum Mechanics 2015 IOP Publishing
Journal of Physics: Conference Series 701 (2016) 012016 doi:10.1088/1742-6596/701/1/012016

6



On comparing with ∆ϕ in Eq. (15), we get |ε| = 6 |ε̃|. There is one further issue we should
care of: measurements are now so precise that the observed value of Ṗb in Table 1 should be
corrected for the relative acceleration between the pulsar reference frame and the solar system
centre-of-mass frame (see Ref. [38]). Such relative acceleration is mainly due to the fact that the
pulsar and our solar system are located in different arms of our Galaxy, at different distances
from the galactic centre. We then get ε̃ = 8.9 · 10−5 , which means |ε| ≃ 5.4 · 10−4, and this
translates into the bound

|β| . 2 · 1071 , (21)

which is tighter than the bound (18) coming from ”standard” Mercury observations, but weaker
than the ”Messenger bound” (19) of the previous section. However, note that we do not have
here the caveat of the error bounds on J2.

6. Conclusions
We have shown that a suitable deformation of the Schwarzschild metric can reproduce the
Hawking temperature for a black hole, when this is computed from a Generalized Uncertainty
Principle. We have found in this way an analytic relation between the deformation parameter
of the metric ε and the usual GUP deformation parameter β. In particular, when β → 0,
we correctly recover GR, and standard quantum mechanics. Neither the geodesic equation,
nor the equivalence principle are violated, for any value of β or ε. Well-known astronomical
measurements, in the Solar system as well as in binary pulsar systems, allowed us to put
constraints on the parameter β. This direction seems to point towards promising research:
at present we just deformed the Schwarzschild solution, but a future possibility is to deform the
full field equations of GR, in order to get, among other things, a more stringent bound on the
GUP parameter β. We would like to conclude by emphasizing once again that, although in the
existing literature one can find bounds on β much tighter than those obtained in this paper,
they seem to depend, at least partially, either on a specific (non linear) representation of the
deformed commutator, or on the hypothesis of a deformation of Poisson brackets, which implies
a violation of the equivalence principle. The line of reasoning presented in this paper avoids
these possible difficulties.

References
[1] Snyder H S 1947 Phys. Rev. 71 38; Yang C N 1947 Phys. Rev. 72 874; Mead C A 1964 Phys. Rev. 135 B

849; Karolyhazy F 1966 Nuovo Cim. A 42 390
[2] Amati D, Ciafaloni M and Veneziano G 1987 Phys. Lett. B 197 81; Gross D J and Mende P F 1987 Phys.

Lett. B 197 129
[3] Maggiore M 1993 Phys. Lett. B 304 65
[4] Kempf A, Mangano G and Mann R B 1995 Phys. Rev. D 52 1108
[5] Scardigli F 1999 Phys. Lett. B 452 39
[6] Adler R J and Santiago D I 1999 Mod. Phys. Lett. A14 1371
[7] Scardigli F and Casadio R 2003 Class. Quantum Grav. 20 3915
[8] Brukner C et al. 2012 Nature Phys. 8 393
[9] Marin F, Cerdonio M et al. 2013 Nature Phys. 9 71

[10] Bawaj M, Biancofiore C, Marin F et al. 2015 Nature Commun. 6 7503 (Preprint, arXiv:1411.6410)
[11] Brau F 1999 J. Phys. A 32 7691
[12] Das S and Vagenas E 2008 Phys. Rev. Lett. 101 221301
[13] Pedram P, Nozari K and Taheri S H 2011 JHEP 1103 093
[14] Chang L N, Minic D, Okamura N and Takeuchi T 2002 Phys. Rev. D 66 026003
[15] Nozari K and Akhshabi S 2008 Chaos Solitons Fractals 37 324
[16] Ghosh S 2014 Class. Quant. Grav. 31 025025
[17] Pramanik S and Ghosh S 2013 Int. J. Mod. Phys. A 28(27) 1350131
[18] Scardigli F and Casadio R 2015 Eur. Phys. J. C 75 425
[19] Walker M 1970 J. Math. Phys. (N.Y.) 11 2280

EmQM15: Emergent Quantum Mechanics 2015 IOP Publishing
Journal of Physics: Conference Series 701 (2016) 012016 doi:10.1088/1742-6596/701/1/012016

7



[20] Zee A 2003 Quantum Field Theory in a Nutshell (Princeton University Press)
[21] Heisenberg W 1927 Zeitschr. Physik 43 172
[22] Scardigli F 1995 Nuovo Cim. B 110 1029
[23] Adler R J, Chen P and Santiago D I 2001 Gen. Rel. Grav. 33 2101
[24] Cavaglia M, Das S and Maartens R 2003 Class. Quant. Grav. 20 L205
[25] Susskind L and Lindesay J 2005 An Introduction to Black Holes, Information, and the String Theory

Revolution (Singapore: World Scientific); See chapter 10
[26] Nouicer K 2007 Class. Quant. Grav. 24 5917
[27] Scardigli F 2008 Glimpses on the micro black hole Planck phase, (Preprint, arXiv:0809.1832)
[28] Dvali G and Gomez C 2011 Black hole’s quantum N-portrait, (Preprint, arXiv:1112.3359)
[29] Ali F, Khalil M and Vagenas E 2015 Europhys. Lett. 112(2) 20005
[30] Jizba P, Kleinert H and Scardigli F 2010 Phys. Rev. D 81 084030
[31] Weinberg S 1972 Gravitation and Cosmology (New York: John Wiley and Sons)
[32] Will C M 2006 Living Rev. Relativity 9, 3rd Update in arXiv:1403.7377v1

[33] Shapiro I I 1990 Solar system tests of general relativity: Recent results and present plans, ed. Ashby N,
Bartlett D F and Wyss W Proceed. 12th Int. Conf. on Gen. Rel. and Grav., Boulder, 1989 (Cabridge, UK,
New York, NY: Cambridge University Press)

[34] Verma A K, Laskar J et al. 2014 Astron. Astrophys. 561 A115
[35] Weisberg J M, Nice D J and Taylor J H 2010 Astrophys. J. 722 1030
[36] Damour T and Deruelle N 1986 Ann. Inst. H. Poincare (Phys. Theorique) 44 263
[37] Taylor J H and Weisberg J M 1989 Astrophys. J. 345 434
[38] Damour T and Taylor J H 1991 Astrophys. J. 366 501

EmQM15: Emergent Quantum Mechanics 2015 IOP Publishing
Journal of Physics: Conference Series 701 (2016) 012016 doi:10.1088/1742-6596/701/1/012016

8


