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Abstract. We explain how weak values and the local momentum can be better understood in
terms of Bohm’s notion of structure process. The basic ideas of this approach can be expressed
in a fully algebraic way, generalising Heisenberg’s original matrix mechanics. This approach
leads to questions that are now being experimentally investigated by our group at University
College London.

1. Introduction
1.1. Act not Fact
It is almost a century since quantum mechanics was discovered but there remains the unresolved
problem of the collapse of the wave function. Could it be that we have been focusing on the
wrong mathematical structure to provide an adequate understanding of quantum phenomena?
David Finkelstein [1] thinks so and argues that “to speak about the wave function of the system
is a syntactic error”. I agree, so let me explain what he means.

When we set up a Stern-Gerlach magnet with its axis in a certain direction and find the spin
is, say up, the wave function contains information about what the experimenter is doing to get
such a result. Reorienting the magnet will produce a different result on an identically produced
system. This involves a double act, Act 1, as Finkelstein calls it, is the preparation and Act 2,
is mistakenly called the ‘measurement’. However there is no difference between the two Acts,
they are just carried out in a different order. Act 2 could be used for the preparation of another
experiment and therefore could be called ‘preparation 2’, but today we use the terminology ‘pre-
and post-selection’.

Before embarking on a development of a formal algebraic approach to quantum phenomena
it is important to realise that the context in which we are working involves a radical reappraisal
of underlying physical ideas forming the basis of our approach. These ideas go back to the
1960s when David Bohm, Roger Penrose and I were exploring the possibility of changing the
geometrical picture of the space-time structure to accommodate quantum processes. Bohm’s
proposal [2] was that we should not assume that these quantum processes can be analysed as
particles moving in an a priori given space-time, but rather all is a modern form of Heraclitian
flux so that what is is the process of becoming itself. All objects and particles are then ultimately
quasi-stable, quasi-local forms that can be abstracted from this underlying process which we
called the holomovement and hence they are themselves inseparable from the underlying activity.
In a little known paper, Bohm [3] showed that this activity could be described by a set of
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elemental structure-processes (see Figure 1) whose meaning we will bring out as we go along.
This structure of elemental processes undergoes a discrete or continuous movement as it unfolds
in a process of development. Penrose explored these ideas in his theory of spin networks [4],
which ultimately led to the development of twistors [5]. Bohm and I developed a more general
algebraic structure-process, originally based on orthogonal Clifford algebras, but now extended
to symplectic Clifford algebras [6, 7].

Within this context, let me develop the mathematics in a heuristic manner and show that the
formal mathematical structure mentioned above is closely related to the conventional formalism
but sufficiently different to offer new insights. To do this, let us make use of a formalism already
introduced by Dirac [8], but generally ignored.

We will denote Act 2 by ψ⟩ and Act 1 by ϕ⟩; we are then looking at the process ϕ⟩ → ψ⟩1.
Following Feynman, we define the transition probability amplitude, [TPA], for the process,

TPA = ⟨ψ|ϕ⟩. (1)

But this brings the process to an end by forming a complex number. Indeed forming
⟨x|ψ⟩ = ψ(x), produces the wave function. But this is simply another transition probability
amplitude, ψ⟩ → x⟩, which tells you more about the act of producing an effect, rather than
telling us about the state of the system.

In the standard approach eigenvalues are assumed to be associated with properties of the
system, giving these properties a value which is assumed to describe the state of the system. We
have argued above that the wave function is a TPA and so how are we to understand eigenvalues
in terms of TPAs? They are simply TPAs in which Act 2 is the same as Act 1, ψ⟩ → ψ⟩, that
is the pre- and post-selections are identical. Therefore they are values that persist unchanging
when you subject the system to the same process – nothing more, nothing less. How then are
we to develop a mathematics of process?

1.2. Clifford Algebras and Process
As I was exploring the origins of Clifford algebras and their relations to quaternions (essentially
Pauli spinors), my attention was drawn to a lecture by Hamilton [9] in which he was discussing
the metaphysical aspects of algebra. He writes:

In algebra, the relations .... are between successive states of some changing thing or
thought. Numbers are the names or nouns of the algebra; they are the marks or signs,
by which one of these successive states may be remembered and distinguished from
another..... relations between successive thoughts thus viewed as successive states of
one or more general changing thought, are the primary relations of algebra.

In attempting to generalise the quaternions to higher dimensional space, Clifford [10] points out
that there are two sides to the notion of a product. The relation 2×3 equals 6, may be regarded
as the product of the two numbers 2 and 3; or it may be regarded as the act of doubling the
number 3. In the latter, 3 is a number but 2 is an operation, and the two factors play very
distinct parts. Thus Hamilton’s quaternions are likewise operations which transform one vector
into another but now, when we a dealing with quantum phenomena, we have an important
new feature, namely, non-commutativity, a feature which plays a crucial role in distinguishing
between classical and quantum mechanics. For more details see Hiley [7, 11].

Let us return to the quaternion and consider its action of rotating and stretching a vector ρ
to produce a vector σ,

qρ = σ.

1 This is not a typo. The absence of ‘|’ will be explained below.
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But this multiplication can be non-commutative, so that we may find that ρq = η ̸= σ.
The precise relationships between the various elements appearing here are determined, not
individually, but by the overall structure of the algebra.

We want to effect a further change and make the vectors themselves part of the algebra; we
therefore introduce ρ∗, a dual to ρ so that

q = σρ∗ with ρρ∗ = 1. (2)

Notice that q is an action and therefore the product σρ∗ must also be an action.
Let us consider re-writing equation (2) in the form

q = σ⟩⟨ρ. (3)

Now we are in a position to explain the standard ket, a new notation first introduced by
Dirac [8] and subsquently discussed in more detail in the 3rd edition of his classic text on
quantum mechanics [12]. Originally the symbol, | , in front of the ket | ⟩ was introduced to
separate operators from the labels used to specify the wave function. But the content of the
wave function is determined by the operators themselves, simply by replacing the operators by
their eigenvalues. Dirac thereby shows that nothing is lost by removing the distinction between
operator and wave function.

What Dirac had effectively done was to remove the distinction between an element of the
operator algebra and the wave function without losing any information about the content of
what is carried by the wave function. Thus everything now is contained in the algebra itself.
This is exactly what we require if we want to obtain an algebraic description of process. In fact
Dirac had formed an element of a left ideal in the algebra by the symbol ⟩. Only multiplication
from the left is allowed. He called the object ⟩ the standard ket and its dual ⟨ the standard bra.
We then have a way of distinguishing between left and right translations, a distinction that is
essential in non-commutative geometry.

We have now reached the position in which all elements are within the same algebra except
one, namely ⟩⟨. To identify this symbol, notice that in a non-nilpotent algebra, there always
exists an idempotent, i.e., an element ϵ such that ϵ2 = ϵ. Then we can always write an element
of a left ideal in the form ΨL = ψϵ where ϵ is an idempotent satisfying ϵ2 = ϵ. Thus ⟩⟨ is a
symbol for an idempotent, which is, unfortunately, not in the nilpotent Heisenberg algebra and
therefore must be added.

The fact that ⟩⟨ is an idempotent has already been noticed by Kauffman [13] and its role has
been discussed in more detail in Hiley [7]. There we point out that in order to introduce spin
and relativity, we must introduce the orthogonal Clifford algebra. That algebra is not nilpotent
and many idempotents exist. They are used to describe the break in the space-time symmetry
when a homogeneous magnetic field is introduced by the experimenter.

In a series of insightful papers on quantum geometry, Schönberg [14] has already introduced
the required idempotent to complete the Heisenberg algebra through the defining relations

E2 = E, PE = EX = 0

where E ≡ ⟩⟨ and X and P are elements of the Heisenberg algebra. To make the role of
E clearer, Frescura and Hiley [15] showed that in the usual transformation to the bosonic a, a†

algebra, E is replaced by the projection onto the vacuum state V = |0⟩⟨0| so that aV = V a† = 0.
What we have done can easily be understood in terms of a matrix representation. A general

way of writing a rank one matrix, q, is to product a column matrix, σ with a row matrix ρ∗,
which is done in equation (2). Thus we have returned to a “matrix mechanics”, where our
matrices now have an actual physical meaning in terms of a structure-process. In fact we do
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Figure 1. Elementary Process

not need to resort to a matrix representation once we realise that a simple element of a general
algebra can be written as a product of an element of a left ideal ΨL and an element of a right
ideal ΨR.

It should be noted that the mathematical structure we have highlighted here is of physical
significance in the context of structure process. Furthermore it can be shown that this algebraic
structure can be mapped isomorphically onto the standard Hilbert space formalism. However if
that is done and the standard interpretation is adopted, we are right back into the measurement
problem and interpretational difficulties.

2. Structure-Process
2.1. The Elementary Process and Groupoids
Let us take a step back and try to examine in more detail the mathematical description we have
introduced heuristically in the previous section. Recall that becoming was taken as primary,
whereas being, a natural primary term in the classical paradigm, is a special case of becoming,
a repeated becoming that produces no change. In order to put these words into a firmer
mathematical context, let us represent becoming by an element aij and take multiplication
to be the order of succession. Each process has a source i and a target j. The sources and
targets can be regarded as the idempotents aii and ajj . A useful image is shown in Figure 1.

To give the abstract notion of an elementary process more physical meaning, recall that in
relativity we are forced to take the notion of a point event as basic. Then the elementary process
would be the relation between a pair of events, the primary connection being a light ray. This is
the basic idea that Penrose [5] adopts in his twistor theory. However the meaning of the symbol
is not directly relevant. It is only the relationships and the operations in which these symbols
take part that gives the whole structure its meaning. In other words the single algebraic symbol
is similar to a word, in the sense that its implicit meaning only comes out in the way in which
the language as a whole is used [2].

If a process gij is followed by another process g′j′k, then ‘succession’ is defined only when

j = j′. In other words we have assumed that our structure process forms a groupoid. In
symbols

g, g′ ∈ G and j = j′, then gijg
′
j′k = g′′ik

where G is some group.
What then is a ‘being’, a particle, in a process philosophy? Eddington [16] has suggested that

we do not want to introduce a particle as a “lump of matter”, matter being a metaphysical term
that has no place in a process philosophy. Rather, as we have hinted above, a natural structural
concept of existence can be represented by an idempotent, aiiaii = aii. This is a process that
continuously turns into itself. This idempotent could, itself, be a complicated substructure of
processes, a notion that is exactly what is needed for the concept of a particle in relativity, where
there is a fundamental difficulty with the idea of extended matter. In relativity, an extended
object must be represented by a world tube of a complex structure of events in space-time.
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The assumption that structure process can be described by a groupoid fits in naturally with
Heisenberg’s original idea of replacing each of position and momentum by two-indexed symbols
in order to explain the Ritz-Rydberg combination principle ν(nm) = ν(nk) + ν(km). Then if
we replace the position q by q(nm) and write it in the form

q → q(nm)→ a(nm) exp[2πiν(nm)t]

we see immediately that the product produces the correct combination of frequencies since
hν(nm) = (En − Em).

Heisenberg actually went further by writing E(nm) = Enδnm so that

Eq =
∑
k

E(mk)q(kn) =
∑
k

Emδmkq(kn) = Emδmn

qE =
∑
k

q(mk)E(kn) =
∑
k

q(mk)Ekδkn = Emδmn

giving Heisenberg’s equation of motion,

q̇ =
i

~
(Eq − qE).

Thus by introducing addition to capture the order of coexistence, we are led to a non-
commutative algebra, which is at the heart of quantum mechanics. Our approach is not merely
to accept formalism as an abstract structure but to provide a physical structure lying behind
the formalism, leading to the need for a clearer understanding of non-commutative geometry.

2.2. New Concept of Motion
Notice that in a non-commutative structure, a key factor is the recognition that we must
distinguish between left and right translations. In other words, order is vital. The distinction
gives rise to the possibility of a new type of motion, namely, that an old structure may evolve
into a new structure via the inner automorphism:

e′ =M−1
1 (τ)eM2(τ) (4)

where τ parameterises the order of succession. This is what Bohm [2] calls an enfolding-unfolding
movement that lies behind the path integral method introduced by Feynman [17]. We will assume
that M1 =M2 = exp[iHτ ] so that for small τ , equation (4) can be written in the form

e′ = (1− iHτ)e(1 + iHτ) ⇒ i
(e′ − e)

τ
= He− eH. (5)

In the limit this becomes the Heisenberg equation of motion, provided we identify τ with time.
Thus we directly make contact with the historical starting point of quantum mechanics in terms
of structure-process.

We can say more. e and e′ are elements of the algebra so that they can be written in the
form e = |ψ⟩⟨ϕ| in the way we have suggested above2. We find equation (5) becomes

i
d|ψ⟩
dτ
⟨ϕ|+ i|ψ⟩d⟨ϕ|

dτ
= (H|ψ⟩)⟨ϕ| − |ψ⟩(⟨ϕ|H)

2 We retain the | in order to make immediate contact with the usual notation.
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which splits into two equations

i
d|ψ⟩
dτ

= H|ψ⟩ and − id⟨ϕ|
dτ

= ⟨ϕ|H.

So the Schrödinger equation and its dual emerge from this process [18]. Since the dual is
considered as the complex conjugate of the wave function, it is usually assumed that this adds
no new content and therefore the dual equation is of no consequence. However approaching
through the algebraic point of view where we are distinguishing between the left and right
translation, it does have a significance. For more details see Hiley [11].

2.3. Equations of Motion from the Lagrangian
Notice however that we also obtain two equations from the Heisenberg Lagrangian

L = − 1

2m
∇ψ∗ · ∇ψ +

i

2
[(∂tψ)ψ

∗ − (∂tψ
∗)ψ]− V ψ∗ψ.

We then use the Euler-Lagrange equations treating ψ and ψ∗ as independent so that

∂L
∂ψ
− ∂µ

(
∂L
∂ψµ

)
= 0 and

∂L
∂ψ∗ − ∂µ

(
∂L
∂ψ∗

µ

)
= 0

where ψµ = ∂µψ and ψ∗
µ = ∂µψ

∗. Evaluating the two equations of motion, we find

i~∂tψ = Hψ and − i~∂tψ∗ = Hψ∗

or more suggestively

i~
−→
∂ t|ψ⟩ =

−→
H |ψ⟩ and − i~⟨ψ|

←−
∂ t = ⟨ψ|

←−
H.

Now we can rewrite the Lagrangian in terms of the two real fields R and S where as usual
ψ = R expiS/~ so that

L = −R2

(
∂S

∂t
+

(∇S)2

2m
+

~2

2m

(∇R)2

R2
+ V

)
. (6)

Treating R and S as independent variables, we find the two Euler-Lagrange equations now
become

∂tρ+∇.(ρ∇S/m) = 0

and

∂S

∂t
+

1

2m
(∇S)2 − ~2

2m
(∇2R)/R+ V (x) = 0. (7)

These equations are, of course, the equations central to the Bohm approach but notice they are
also central to the quantum formalism.

Returning to the Lagrangian (6), we see that there are two kinetic energy terms, (∇S)2/2m
and ~2(∇R)2/2mR2. This is confirmed by noting that the diagonal terms in the usual expression
for the energy-momentum tensor, evaluated using the Lagrangian given in equation (6), can be
written as

T kk − Lδkk = R2

2m

[
(∂xkS)2 + ~2

(∂xkR)2

R2

]
+ V R2.
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Furthermore we find two canonical momenta, namely,

p1(x, t) = ∇S(x, t) and p2(x, t) = ~∇R(x, t)/R(x, t). (8)

The first term is simply the real part of the local momentum, sometimes called the Bohm
momentum, while the second term is called the ‘osmotic’ momentum after it appeared in
Nelson’s [19, 20] stochastic model used in his derivation of the Schrödinger equation from
Brownian motion. However we are talking about a single particle, and therefore such an approach
requires the existence of some form of sub-quantum medium, an old idea which has dropped out
of favour.

In our approach the two momenta arise because the order of succession is vital and gives rise
to a non-commutative structure. In such a structure it is necessary to distinguish between left
and right translations and it is this difference that gives rise to the ‘strange’ features of quantum
processes.

In an early important paper by Hirschfelder et al [21] it is shown that

⟨x|P |ψ⟩
⟨x|ψ⟩

= p1 + ip2 (9)

where p1 and p2 are exactly the same terms as appear in equation (8). But the LHS of equation
(9) is what is now called the weak value of the momentum for a post-selected state that is the
final position.

Our approach to the behaviour of what we can call a single particle is dictated by equation
(7) which ensures the conservation of energy provided we regard the term

Q = − ~2

2m
(∇2R)/R

as a new quality of energy arising from the additional ‘osmotic’ process. Traditionally this has
been called the quantum potential energy because it has, at times, been regarded as giving rise
to an ‘internal force’. This is not the way we regard it in the structure process approach. Rather
it is an internal energy arising from an extra degree of freedom in which the process acts.

In the above equations, the properties are assumed to be local, hence the term ‘local
momentum’. If we regard equation (7) as a local particle equation, then where are the global
properties which are required if the experimental conditions are to play a key role as Bohr has
claimed? They are encoded in the quantum potential energy which enables us to work with a
local model.

This is in contrast to standard quantum field theory which works with global properties of
both energy and momentum with the momentum of the particle defined through

P j =

∫
T 0j(x, t)d3x and E =

∫
T 00(x, t)d3x.

Thus we are left with the question of whether we should regard a quantum particle as a global
or local object, a conflict that Colosi and Rovelli [22] have already discussed at some length and
so we will not repeat their arguments here but strongly recommend their paper to the interested
reader.

3. The Problem of Stationary States
In order to illustrate one of the advantages of the new analysis through structure-process, let
us return to the objection that Einstein [23] raised against the original Bohm proposals. In a
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stationary state, the spatial part of the wave function can be real so that pB = ∇S = 0. This
implies that the ‘particle’ is stationary, a result that violates our physical intuition.

A way to see what is going on is to analyse a simple example, namely the eigenstate of a
particle in a one-dimensional box with infinite potential delta function walls. Here, as every
undergraduate learns, the eigenfunctions, ψn(x, t), are all real

ψn(x, t) =

√
2

a
sin

(nπx
a

)
e−

iEnt
~

where a is the length of the box. In terms of a polar decomposition of the wave function

Rn =

√
2

a
sin

(nπx
a

)
and Sn = −Ent.

Then

∂xSn = 0; ∂tSn = −En and Qn = − ~2

2m
∇2Rn/Rn =

n2~2π2

2ma2
.

Thus p1 = 0. However notice that equation (8) gives p2 ̸= 0 so there is activity present even
in the stationary state, a point that was not apparent in the original Bohm model. Thus the
appearance of the quantum potential energy seemed mysterious, simply arising in the real part
of the Schrödinger equation, a feature that led Heisenberg [24] to declare that the potential was
ad hoc. However Hirschfelder et al [21] constructed the local value (ie weak value) of the kinetic
energy showing

(2mψ)−1p̂.p̂ψ = (2ψ)−1p̂.(v1 + iv2)ψ = mv21/2 +Q+ i(mv1.v2 − ~∇.v2/2).

Then we find

2Q = −mv22 + ~∇.v2 = −
~2

m

∇2R

R
. (10)

This gives a very different insight as to the origins of the quantum potential energy. It also
shows that the kinetic energy of the particle cannot be negative, thus contradicting an earlier
result of Aharonov and Rohrlich [25] who concluded from an argument using weak values that
the kinetic energy must be negative.

In terms of our model of structure process, the particle is an invariant feature of an underlying
process, which comprises two components arising from the non-commutative aspect of the
process. What this shows is the condition p1 = 0 does not imply that there is no activity in the
box. On the contrary there is still activity present, but it is in the form of what has been called
‘osmotic’ activity. This term originates from early attempts to understand quantum processes in
terms of some underlying Brownian-type process induced by a sub-quantum medium subjecting
the particle to random stochastic forces. Nelson showed that such stochastic background
processes could lead to the Schrödinger equation provided the diffusion parameter was replaced
by a term including Planck’s constant.

The main step in his argument that is of relevance to our work involves the two derivatives
he introduces, the ‘backward derivative’ and the ‘forward derivative’. These are defined through
the following simplified equations

b∗(x, t) =
x(t)− x(t−∆t)

∆t
and b(x, t) =

x(t+∆t)− x(t)
∆t

.

EmQM15: Emergent Quantum Mechanics 2015 IOP Publishing
Journal of Physics: Conference Series 701 (2016) 012010 doi:10.1088/1742-6596/701/1/012010

8



Figure 2. Many Elementary Processes between two Idempotents

These are the analogues of the left and right translations referred to above. In the appropriate
limit, these form derivates from which we can construct two velocities

v1(x, t) = [b(x, t) + b∗(x, t)]/2 and v2(x, t) = [b(x, t)− b∗(x, t)]/2.

Nelson [19] also shows that the resulting Fokker-Planck equation gives rise to a continuity
equation

∂tρ+∇.(vρ) = 0

where ρ is the density of the fluid. This equation is the analogue of the conservation of probability
equation, the imaginary part of the Schrödinger equation under polar decomposition of the wave
function. Thus we can identify mv with the local momentum, the Bohm momentum p1 of
equation (8).

4. Weak Values
4.1. Statistics
The key equation in the argument of Hirschfelder at al [21] is (9). There we see that the LHS is a
particular example of what Aharonov et al [27] called a ‘weak value’. In our approach, however,
the form of the expression tells us that it is a ratio of two transition probability amplitudes. So
the question is how are the various TPAs related to each other?

Before we can answer that question we need to take a closer look at how statistics enters the
algebraic structure. There may be a number of different ways to connect a pair of idempotents
as shown in Figure 2. In a simple algebra there is a Wedderburn theorem which can be written
in the form

ϵAϵ = ⟨A⟩ϵ

where ⟨A⟩ is the expectation value. We can see this result very quickly if we write

ϵ = |ψ⟩⟨ψ| so that |ψ⟩⟨ψ|A|ψ⟩⟨ψ| = ⟨A⟩|ψ⟩⟨ψ|.

This can also be written as

⟨A⟩ = tr(ρA) where ρ = |ψ⟩⟨ψ| = ΨLΨR = ψLϵψR.

Thus probability arises naturally in the context of structure-process.

4.2. Relationship of Weak Values to Expectation Values
To see how the weak value fits into our structure-process approach, we write

tr(Aρ) =
∑
ϕj

ρ(ϕj)
⟨ϕj |A|ψ⟩
⟨ϕj |ψ⟩

=
∑
ϕj

ρ(ϕj)⟨A(ϕj ;ψ)⟩w
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with ρ(ϕj) = |⟨ϕj |ψ⟩|2. If we choose the following basis

|ϕj⟩ =
∑
j,n

djn|an⟩; |ψ⟩ =
∑
k

ck|ak⟩ and A|an⟩ = an|an⟩,

we find that

⟨A(ϕj ;ψ)⟩w =
⟨ϕj |A|ψ⟩
⟨ϕj |ψ⟩

=

∑
n,k d

∗
jnck⟨an|A|ak⟩∑

n.k d
∗
jnck⟨an|ak⟩

=

∑
n d

∗
jncnan∑

n d
∗
jncn

.

Thus in a two-state system, if we choose the following coefficients

a1 = −1, a2 = 1, dj1 = −99, dj2 = 101, and c1 = c2 = 1,

we find

⟨A(ϕj ;ψ)⟩w =
⟨ϕj |A|ψ⟩
⟨ϕj |ψ⟩

= 100.

So a two-state system with eigenvalues ±1 can easily give rise to a weak value of 100. Thus
there is nothing surprising about the result we have obtained, once we realise that we are talking
about TPAs and not about properties the system possesses.

The usual result focussed on in the standard interpretation is

⟨ψ|A|ψ⟩ =
∑
n

ρ′nan,

with ρ′n = |⟨an|ψ⟩|2. This can be obtained from the weak value by first choosing |ϕj⟩ =
|aj⟩ and |ψ⟩ =

∑
k ck|ak⟩ and finding

⟨A(ϕj ;ψ)⟩w =

∑
k ck⟨aj |A|ak⟩∑
k ck⟨aj |ak⟩

=
cjaj
cj

= aj .

Thus we see that the eigenvalue is a special case of the weak value.
The example we have chosen might seem somewhat artificial but it is easily reproduced by a

more realistic system for the weak value of the z-component of a spin-half system defined by

⟨σz(ϕ;ψ)⟩w =
⟨ϕ|σz|ψ⟩
⟨ϕ|ψ⟩

.

This gives a whole spectrum of weak values from 0→∞ simply by noting that with
⟨ϕ| = ⟨↑z |+ ⟨↓z | and σz|ψ⟩ = d+| ↑z⟩+ d−| ↓z⟩⟩ and choosing

√
2d+ = cosα/2 + sinα/2 and

√
2d− = cosα/2− sinα/2,

we find ⟨σz(ϕ;ψ)⟩w = tanα/2, a result that has already been obtained by Duck et al [26]. Note
that ⟨σz(ϕ;ψ)⟩w = tanα/2 gives the eigenvalues +1 or −1 when α = π/2 or α = 3π/2.

By highlighting what appears to be an anomalous result, Aharonov, Albert and Vaidman [27]
have drawn attention to a weakness in the standard interpretation. It is clear that the important
change in interpretation can now be tested experimentally in a number of ways [28,29].
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Figure 3. Pair of Merging Trajectories

4.3. Why doesn’t the ‘Osmotic’ Velocity show up in the Standard Approach?
Where does the osmotic velocity appear in the standard approach? Consider the momentum
expectation values defined by

⟨ψ|P |ψ⟩ =
∫ [

ρ∇S +
~
2
∇ρ

]
d3x =

∫ [
ρ∇S +

~ρ
2

∇ρ
ρ

]
d3x

= m

∫
[ρv1 + ρv2] d

3x.

Since ρ → 0 as x → ±∞, the second term, which contains the osmotic component, vanishes as∫
∇ρ d3x = 0. Thus only the local velocity contributes to the mean momentum.
Does this mean that there are no consequences of the existence of the osmotic component in

the standard approach? As we have already seen from equation (10), it is the osmotic component
that gives rise to the quantum potential energy which already appears in the real part of the
Schrödinger equation. In terms of the present discussion we should note that the mean value of
the kinetic energy is

⟨ψ|P 2|ψ⟩ =
∫
ρ[(mv)2 + 2mQ]d3x,

while the weak value of the kinetic energy is

⟨P 2
x,ψ(x, t)⟩w/2m = mv2/2 +Q.

Thus once again we cannot escape the appearance of the quantum potential energy. It is an
essential component of quantum processes; it is essential for the conservation of energy as seen
in equation (7).

4.4. Emergence of Classical Mechanics
The local momentum has been used to calculate sets of streamlines [21,30,31] which were then
interpreted as ‘particle trajectories’. This has always been a contentious intrepretation. The
claim originates from the similarity of the form of equation (7) and the classical Hamilton-
Jacobi equation. If Q→ 0 and S → Sa, the classical action, one has the possibility of a smooth
transition of a quantum trajectory to a classical trajectory. When will such a transition take
place?

It is possible to illustrate how this could happen using a toy-model. Noticing that Guth and
Pi [32] had constructed a simple model to explain an inflationary universe using an up-side-
down harmonic potential, Hiley and Mufti [33] showed that by starting with a Gaussian wave
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packet on the top of the potential, a set of trajectories which started out as ‘quantum’ smoothly
transformed into a set of ‘classical’ trajectories as the ‘particles’ accelerated down the potential.
A pair of converging trajectories is shown in Figure 3.

The explanation is simple at one level. As the particle accelerates down the potential the
quantum potential becomes negligible compared with the kinetic energy so that the classical
motion results. However in the context of our approach, where the ‘rock-like’ image of the
particle is being seriously challenged, all we can conclude is that this suggests that it is not
inconsistent to regard the flow lines as particle trajectories.

Within this simplified context, we see a novel form of energy flow

1

2m
(∇S)2 ↔ 1

2m

[
(∇S)2 − ~2

∇2R

R

]
.

As a metaphor, one could liken this process to the KERS device used in F-1 car racing where
internal energy can be stored before being released into the classical world!

5. Conclusions
The concept of a local momentum has been around for many years, but it seems to have been
ignored and dismissed as not being meaningful in a quantum context. Indeed Fritz London [34]
as long ago as 1945 wrote:

The local mean velocity has no true quantum mechanical significance since it cannot
be expressed as the expectation value of any linear operator.

In other words it has been excluded on the grounds that it does not fit into standard quantum
mechanics. In this paper we have shown that the standard quantum formalism is a fragment of
a larger non-commutative algebraic structure. Further, it is within this wider context that the
local momentum can be given a physical meaning.

More importantly, weak values can be measured experimentally, as has been shown by Ritchie,
Story and Hulet [35], Parkes, Cullen and Stoudt [36] and Kocsis et al [37]. This last experiment
has been the most relevant for us since it measured the local momentum of photons in a two-slit
experiment from which photon ‘trajectories’ can be constructed. The exact meaning of these
momentum flow lines is still openly debated. The Bohm approach treats photons very differently
from finite rest mass particles such as atoms. For example in the Bohm theory applied to
photons [38] there are no photon trajectories. This makes the experimental determination of
local momenta using atoms of vital significance. Such an experiment is being developed by our
group and is reported in the paper by Morley, Edmunds and Baker, [39].
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