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Abstract. The de Broglie - Bohm pilot-wave theory – uniquely among realistic candidate
quantum theories – allows a straightforward and simple definition of the wave function of a sub-
system of some larger system (such as the entire universe). Such sub-system wave functions are
called “Conditional Wave Functions” (CWFs). Here we explain this concept and indicate the
CWF’s role in the Bohmian explanation of the usual quantum formalism, and then develop (and
motivate) the more speculative idea that something like single-particle wave functions could
replace the (ontologically problematical) universal wave function in some future, empirically
adequate, pilot-wave-type theory. Throughout the presentation is pedagogical and points are
illustrated with simple toy models.

1. Introduction
One of the central themes of the workshop was assessing the status (ontological or otherwise) of
the quantum state. And, as is always the case in quantum foundations, questions about Bell’s
theorem and nonlocality were not far below the surface.

The pilot-wave theory of de Broglie and Bohm (a.k.a. “Bohmian Mechanics”) is perhaps best
known as a realistic model in which quantum non-locality is manifest. This fact is often cited,
by critics, as a justification for their negative assessment of the theory. But in fact such an
attitude rests on a misunderstanding of Bell’s theorem. Dynamical non-locality is not the price
one pays for attempting to restore determinism or “realism” to quantum theory, but is instead a
necessary feature of any genuine physical explanation of the empirically-observed correlations in
EPR-Bell-type experiments. That is what Bell’s theorem shows, and in that sense non-locality
is simply a fact of nature that we must accept. [1]

But there are actually two very different notions of “non-locality” that we should dis-entangle.
One sense is the dynamical sense (in which “non-locality” means, roughly, “faster-than-light
causal influences”). This is what I meant in the previous paragraph. But the de Broglie -
Bohm pilot-wave theory also exhibits the second, more ontological, sense of “non-locality.” In
particular, the (universal) wave function – which is certainly real according to the pilot-wave
theory – is not a local object (such as something that exists at, or assigns properties to, points or
regions of three-dimensional physical space or 4-dimensional space-time). It is, instead, perhaps
something like a dynamical field (obeying a kind of wave equation) – but a field that lives on
an abstract high-dimensional configuration space. To use Bell’s terminology, the wave function
may be (for the pilot-wave theory) a “beable”, but it is not a “local beable”. It is, rather, a
“non-local beable.”
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Figure 1. The familiar world of ordinary perception is, according to Bohmian Mechanics,
made of the particles (whose motions are choreographed by, but which are not the same thing
as, the wave function Ψ). It is a happy and comfortable world in which one can find things like
butterflies and unambiguously-alive cats.

These two senses of “non-locality” are not entirely unrelated. For example, some authors
have suggested that a field on configuration space is natural and appropriate for a dynamically-
nonlocal theory, and/or that in some sense the theory is (dynamically) nonlocal because the
wave function lives on configuration space. [2] On the other hand, it is certainly possible to
have a theory that contains exclusively local beables but which is nonlocal in the dynamical
sense (think Newtonian gravity), or vice versa. So, conceptually, it is possible (and, I think,
clarifying) to distinguish the two notions.

In any case, it is the specifically ontological notion of “non-locality” that we will focus on here.
After briefly reviewing, in Section 2, the standard formulation of the pilot-wave theory (in which
the universal wave function seems to have the status of a “non-local beable”), we introduce, in
Section 3, the Bohmian Conditional Wave Function (CWF) and highlight some of its intriguing
properties, especially vis-a-vis measurement. Section 4 briefly explains how the CWF can be
used as part of a rigorously-derivable semi-classical approximation scheme, and then Section
5 introduces a related (so-called “Bohmian Double Semi-Quantum”, BDSQ) approximation
scheme. Finally, in Section 6, we discuss how something like the BDSQ could perhaps be
a useful jumping-off point for producing a (dynamically non-local) theory of exclusively local
beables.

2. Bohmian Mechanics
According to Bohmian Mechanics, a complete description of the physical state of the universe
involves the (universal) wave function Ψ = Ψ(~x1, ~x2, ..., ~xN , t) as well as the configuration

Q(t) =
{
~X1(t), ~X2(t), ..., ~XN (t)

}
of N particles. In the simple case of non-relativistic, spinless

particles the wave function evolves in accordance with Schrödinger’s equation

ih̄
∂Ψ

∂t
=

N∑
i=1

−h̄2

2mi

~∇2
i Ψ + V (~x1, ..., ~xN )Ψ. (1)

The particle positions evolve under the influence of the wave function as follows:

d ~Xi

dt
=

h̄

mi
Im

(
~∇iΨ

Ψ

)∣∣∣∣∣
~xj= ~Xj ∀ j

. (2)
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Figure 2. The wave function of the universe (artist’s conception).

Note in particular that those two equations completely define the dynamics of the theory, and
they apply exceptionlessly. Unlike in textbook/orthodox quantum mechanics, for example, there
are no special provisions for violations of the usual dynamical evolution during “measurements.”

How should one think about “physical reality” according to the pilot-wave theory? To begin
with, it is crucial to appreciate that ordinary material objects (like tables, trees, cats, planets,
and pieces experimental measuring equipment) are made of the particles. The particles are (in
Bell’s terminology) “local beables” and function (in the terminology of Goldstein et al.) as the
“primitive ontology” of the theory. [3] The wave function is also real, according to the theory,
but is by contrast not a “local beable” and not part of the theory’s “primitive ontology”. Unlike
the particles, Ψ is a spooky, invisible, ethereal object which, so to speak, lurks offstage and
orchestrates the motion of the particles according to Equation (2). These two components of
the theory’s posited ontology are illustrated in Figures 1 and 2, respectively.

The greatest virtue of Bohmian Mechanics is the simplicity with which one can understand,
in terms of the posited local beables (namely, particles with definite positions), the emergence
of a familiar macroscopic world of three dimensional objects. This is what’s really illustrated
in Figure 1. And in so far as one regards the theory’s dynamical non-locality as a necessary
feature (rather than a bug), the theory’s only vice would seem to be that it is very difficult to
understand what kind of thing, exactly, the universal wave function Ψ is supposed to be. As
a “non-local beable”, it does not in any straightforward sense exist in ordinary physical space,
and yet it influences the particles in physical space. How does that work? And what does it
even mean for a physically real thing to not exist in physical space? Is there some other space
where it does exist? Physically? Questions of this sort have led some to suggest that Ψ is not a
“thing” at all, but is instead more like a “law”. [4]

Our ultimate goal here is to propose an alternative possibility. But first we must put some
technical groundwork in place.

3. Bohmian Conditional Wave Functions
It is important to appreciate that the Ψ which appears in Equation (1) is the wave function
of the universe. This is not the wave function one normally deals with in quantum mechanics,
which is always the wave function for some small system which is (say) later to be measured by
means of an appropriate interaction with some other object (a measuring device, say) outside the
small system of interest. So it is not immediately obvious how to relate the axioms of Bohmian
Mechanics to textbook quantum mechanics.

As it turns out, though, Bohmian Mechanics does allow one to fully understand – to derive –
the textbook QM formalism, including even the infamous collapse postulate. To see this, notice
that Bohmian mechanics provides a natural (and, among candidate quantum theories, unique)
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Figure 3. The energy of a “particle-in-a-box” is measured, and the outcome is registered in
the final position of the particles composing the pointer.

way of defining the wave function of a sub-system. Consider, for example, a particular particle
with degree of freedom x. We can divide the generic configuration point q = {x, y}, where y now
denotes the coordinates of other particles, i.e., degrees of freedom from outside our sub-system
of interest. We then define the conditional wave function (CWF) for our particle as follows:

φ(x, t) = Ψ(q, t)|y=Y (t) = Ψ [x, Y (t), t] . (3)

That is, the CWF for one particle is simply the universal wave function, evaluated at the actual
positions Y (t) of the other particles.

Note that the “guidance equation” (according to which the wave function “orchestrates” the
motion of the particles) for each particle can be re-expressed in terms of that particle’s CWF

d ~X

dt
=

h̄

m
Im

(
~∇φ(x, t)

φ(x, t)

)∣∣∣∣∣
x=Xj(t)

(4)

so that the CWF can be understood as having precisely the dynamical significance, for the
associated particle, that one perhaps normally imagines to be involved in a “pilot-wave theory”.

It is fairly straightforward to see that, in the case where the particle in question is suitably
decoupled from its environment, the associated CWF will obey the obvious single-particle
Schrödinger equation that one would have expected from the point of view of textbook quantum
mechanics.

The more interesting and surprising thing is that, in the kind of case that we would normally
describe as a measurement, the CWF collapses according to the usual textbook rule, even though
nothing like a “collapse postulate” appears in the basic axioms of the theory. Let us illustrate
with a simple toy model, in which the quantum system is a one-dimensional “particle-in-a-box”
and the energy-measurement apparatus is treated very schematically. In particular, we explicitly
track just the horizontal positions of two particles in the apparatus pointer – see Figure 3 – which
are taken to interact with the particle-in-a-box according to the interaction Hamiltonian

Ĥint = λĤx(p̂y + p̂z) (5)

where Ĥx is just the energy of the PIB, and p̂x and p̂y are the momentum operators for the

pointer particles. (The total Hamiltonian includes not only Ĥint and Ĥx but also kinetic energy
terms for the two pointer particles.) The interaction is such that, if the initial quantum state is

Ψ(x, y, z, 0) = ψn(x)G0(y)G0(z) (6)
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Figure 4. The left panel indicates the evolution of the wave function Ψ(x, y) in configuration
space – the z coordinate is suppressed here – while the right panel indicates the evolution of
the actual particle configuration (X(t), Y (t)) for a random initial condition (X(0), Y (0)). Note
that the final pointer position Y (t) ≈ 6 is in the support of the n = 2 “branch” of Ψ and so we
would say, in this case, that the energy measurement had outcome E2.

(where ψn is an eigenstate of Ĥx with eigenvalue En and G0 is a Gaussian wave packet centered
on zero) the final state involes (pseudo-) Gaussian wave packets that have moved, to the right,
by a distance proportional to En:

Ψ(x, y, z, t) = ψn(x)e−iEnt/h̄Gt(y − λEnt)Gt(z − λEnt). (7)

It then follows from the linearity of the Schrödinger equation that, if instead the PIB begins in
a superposition of energy eigenstates

Ψ(x, y, z, 0) =

(∑
n

cnψn(x)

)
G0(y)G0(z) (8)

the final state is the entangled superposition

Ψ(x, y, z, t) =
∑
n

cnψn(x)e−iEnt/h̄Gt(y − λEnt)Gt(z − λEnt). (9)

From the orthodox perspective (in which one regards the wave function itself as somehow
describing or corresponding to physical reality) this last equation reflects the so-called
measurement problem. But from the Bohmian point of view (in which it is the particles, not
the wave function, which are supposed to correspond to the observable material world) there is
no such problem. The particles move in some particular way and, in particular, the particles
composing the pointer end up in some particular location which we interpret as indicating the
(totally unambiguous and unproblematic and actual) outcome of the experiment. See Figure 4.

But then consider the time-evolution of the CWF of the particle-in-the-box. At t = 0, when
the quantum state factorizes, the CWF is just (proportional to) the energy-superposed initial
state of that particle: φ(x, 0) ∼

∑
n cnψn(x). Then, as the quantum state begins to separate

into branches, the CWF evolves in a very complicated non-linear way. But once the branches
have ceased to overlap appreciably in configuration space – see the left panel of Figure 4 – the
CWF settles down into one of the energy eigenstates ψn(x). For example, for the particular
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initial particle positions illustrated in the Figure (with the final pointer position Y (T ) in the
support of the n = 2 branch of Ψ), it is clear that

φ1(x, T ) = Ψ [x, Y (T )] ∼ ψn(x). (10)

So the conditional wave function has “collapsed,” as a result of the interaction with the energy
measuring device, from a superposition of many energy eigenstates, to the one particular energy
eigenstate that corresponds to the actual outcome of the experiment. (Some video animations
of the particle-in-a-box’s CWFs evolving – i.e., “collapsing”, but in a perfectly continuous way –
can be found in the supplementary materials.) This is the sense in which the pilot-wave theory
explains the collapse postulate, and in general the rules that are instead postulates for ordinary
QM. Although, according to the pilot-wave theory, the “big” (i.e., universal) wave function
always evolves in accordance with the Schrödginer equation (and hence never collapses) the
“small” wave functions associated with sub-systems obey a sub-system Schrödinger equation
when (according to ordinary QM) they should, but also collapse when (according to ordinary
QM) they should.

4. Bohmian Semi-Classical Techniques
In addition to helping us understand how, from the Bohmian pilot-wave point of view, the usual
textbook quantum formalism can be understood to emerge, naturally, from a set of simple and
unambiguous axioms, CWFs are also relevant to understanding and justifying semi-classical
approaches. Let’s discuss this in terms of a simple toy-model system: two interacting one-
dimensional simple harmonic oscillators. The total Hamiltonian will be

Ĥ =

(
− h̄2

2m

∂2

∂x2
+

1

2
mω2x2

)
+

(
− h̄2

2M

∂2

∂y2
+

1

2
mω2y2

)
+ λxy. (11)

If (say) M � m we might treat the system semi-classically, with the wave function ψ(x, t) of
the (“light”) quantum system obeying

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
+

1

2
mω2x2ψ + λxY ψ (12)

with a contribution from the (“heavy”) classical system whose position Y (t) obeys

Ÿ + ω2Y +
λ

M
X = 0. (13)

In the usual (“orthodox”) semi-classical treatment

X = 〈ψ|x̂|ψ〉 (14)

is the “quantum average position” of the x-system.
In the pilot-wave theory, though, we have the resources to let the x-system influence Y (t) via

the actual, Bohmian position, that is

X = X(t) satisfying
dX

dt
=

h̄

m
Im

(
∇ψ
ψ

)∣∣∣∣
x=X

. (15)

One anticipates that, in situations where the “quantum average position” is very different from
any of the individual quantum possibilities (e.g., there is a scattering event, with a transmitted
packet and a reflected packet, and so the average position is nowhere near any of the possible
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positions) the uniquely Bohmian semi-classical technique should yield more accurate results.
This is indeed borne out by some preliminary studies, although this issue has not yet received
the attention it probably deserves. [6, 7, 8, 9]

Note also that, whereas the orthodox semi-classical approach can only really be motivated
in a somewhat hand-wavy way, it is possible to give a more rigorous derivation of the uniquely
Bohmian semi-classical (BSC) approximation. To begin with, the full Bohmian description of
the two-particle system involves the Schrödinger equation

ih̄
∂Ψ(x, y, t)

∂t
=

[
−h̄2

2m
∇2

x +
−h̄2

2M
+ V (x, y)

]
Ψ(x, y, t) (16)

as well as the guidance equations for the positions of the two particles:

dX

dt
=

h̄

m
Im

(
∇xφ

φ

)∣∣∣∣
x=X(t)

(17)

(where φ is the CWF of the x-system) and

dY

dt
=

h̄

M
Im

(
∇yΨ

Ψ

)∣∣∣∣
x=X(t),y=Y (t)

. (18)

As is reasonably well-known, if we take a time derivative of this last guidance equation, it can
be re-expressed in 2nd order form:

MŸ = −∇y (V +Q)|x=X(t),y=Y (t) (19)

where Q is the so-called “quantum potential”. When (the gradient of) Q is negligible compared
(the gradient of) V , we arrive at the semi-classical equation with the Bohmian-type feedback,
i.e., Equation (13) with X = X(t).

It is then also possible to show that, as a consequence of the “big” wave function Ψ obeying
Equation (16), the CWF φ satisfies the pseudo-Schrödinger equation

ih̄
∂φ(x, t)

∂t
=
−h̄2

2m
∇2

xφ(x, t) + V [x, Y (t)]φ(x, t) + ih̄
dY

dt

∂Ψ

∂y

∣∣∣∣
y=Y (t)

+
−h̄2

2M

∂2Ψ

∂y2

∣∣∣∣
y=Y (t)

. (20)

This makes it clear that, when the last two terms on the right hand side can be ignored (i.e.,
roughly, if M is large and dY/dt is small) then we have exactly the semi-classical dynamical
equation for the quantum half – a Schrödinger equation in which the particle is influenced by
the “classical” position Y of the other particle through the interaction potential.

Thus, not only does the pilot-wave theory afford a somewhat novel version of the semi-
classical treatment (which should and seems to work better than standard approaches in at
least some cases), it also allows a more rigorous derivation and hence a better and more explicit
understanding of when and why a semi-classical treatment might be appropriate. And it does
this, in part, because the pilot-wave theory allows this very natural definition of “the wave
function of a sub-system”, the CWF.

5. The Bohmian Double Semi-Quantum (BDSQ) Approximation
The last section described the Bohmian approach to breaking a compound system apart into
a quantum part and a classical part. It is interesting to note, though, that one could also
break a compound system apart and treat both parts in a quantum way, with influences on
each sub-system occuring via the Bohmian position of the particle in the other system, as in the
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BSC treatment. I call this the “Bohmian Double Semi-Quantum” (or BDSQ) approximation
scheme, and the idea centers around the Bohmian CWF. As noted in the previous section, for
a two-particle system whose (“big”) wave function Ψ obeys the Schrödinger equation, the CWF
for particle 1 will obey

ih̄
∂φ1(x, t)

∂t
= − h̄2

2m1

∂2φ1

∂x2
+ V [x, Y (t)]φ1 + ih̄

dY

dt

∂Ψ

∂y

∣∣∣∣
y=Y (t)

− h̄2

2m2

∂2Ψ

∂y2

∣∣∣∣
y=Y (t)

(21)

and similarly the CWF for particle 2 will obey

ih̄
∂φ2(y, t)

∂t
= − h̄2

2m2

∂2φ2

∂y2
+ V [X(t), y]φ2 + ih̄

dX

dt

∂Ψ

∂x

∣∣∣∣
x=X(t)

− h̄2

2m1

∂2Ψ

∂x2

∣∣∣∣
x=X(t)

. (22)

And of course we also have the particle positions X(t) and Y (t), evolving under the influence of
their respective CWFs. Dropping the last two terms in both of the previous two equations gives
a simple, closed system of two one-particle Bohmian systems (i.e., particles moving under the
influence of a pilot-wave which in turn evolves according to a Schrödinger-type equation) which
interact: the position of each particle affects the evolution of the other particle’s pilot-wave via
the interaction potential.

Note that this scheme will exactly reproduce the ordinary Bohmian particle trajectories (and
hence the empirical predictions of ordinary quantum mechanics) if the two particles are (and
remain!) unentangled. (In this case, the “big” wave function Ψ is a product, and so each
particle’s Bohmian CWF is simply proportional to the state it would be assigned in ordinary
QM.) So this is in some sense a “small entanglement approximation” (SEA). [10]

I illustrate this here with the simple example of the two interacting 1-dimensional SHOs
mentioned before. This system is nice because it can be solved exactly. For example, if
Ψ(x, y, 0) = ψ1(x)ψ0(y) (i.e., particle 1 is in the first excited state, n = 1, while particle 2
is in the ground state, n = 0), the exact solution of Schrödinger’s equation is

Ψ(x, y, t) = cos

(
λt

h̄ω

)
ψ1(x, t)ψ0(y, t)− i sin

(
λt

h̄ω

)
ψ0(x, t)ψ1(y, t). (23)

That is, the system oscillates back and forth between the initial state and the state in which the
one quantum of energy is instead held by particle 2.

If we treat the system using the BDSQ approximation scheme, the wave function of each
particle can be written as in, for example,

φ1(x, t) = a0(t)ψ0(x, t) + a1(t)ψ1(x, t). (24)

To solve the system numerically, we must track, for particle 1, a0(t), a1(t) and of course X(t),
and then three similar degrees of freedom for particle 2. See Figure 5 for graphs showing the
results from this simple example.

One sees that the BDSQ approach reproduces the qualitative, oscillatory behavior of the
exact fully-quantum solution, but that the details (such as the period of the oscillations) are not
exactly correct. It is of course not surprising that the calculations do not precisely reproduce
the exact dynamics; recall that the last two terms in Equations (21) and (22) have been simply
ignored. But, I want to suggest, it is interesting that we get oscillations here at all, because
these arise from the specifically Bohmian character of the approximation scheme. In particular,
at t = 0, φ1 = ψ1 (the first excited state) and φ2 = ψ0 (the ground state). The interaction,

Ĥ = λx̂ŷ, would seem to be impotent if one replaces ŷ → 〈ψ0|ŷ|ψ0〉 = 0. But of course, in the
Bohmian semi-quantum approximation, one instead has ŷ → Y which can be (and typically is)
different from zero even when, for example, φ2 is the perfectly symmetric ground state.
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Figure 5. The blue curves show the results of a numerical calculation of the time-dependent
weights of the n = 0 and n = 1 states in φ1. The red curves show the corresponding quantum
probabilities from the exact solution. One sees that while the overall qualitative behavior
(namely, the back-and-forth oscillations) is basically correct, the details are not quite right.
This is not too surprising since the BDSQ is a rather uncontrolled approximation scheme. Still,
the result is interesting in comparison to a corresponding non-Bohmian approach, in which each
sub-system is influenced only by the quantum average position of the other system. In this
case one would never see even the qualitatively appropriate oscillatory behavior seen here. The
oscillation, that is, arises specifically from the fact that each quantum half-system feels a force
(so to speak) from the Bohmian position of the other half system, and this can be different from
zero even when the quantum average would be zero.

Note that we can, in principle, go beyond the BDSQ approximation by including the neglected
terms by introducing new fields, for example

φ′1(x, t) =
∂Ψ(x, y, t)

∂y

∣∣∣∣
y=Y (t)

(25)

and

φ′′1(x, t) =
∂2Ψ(x, y, t)

∂y2

∣∣∣∣
y=Y (t)

(26)

which will obey their own dynamical Schrödinger-type equations (e.g.)

ih̄
∂φ′1(x, t)

∂t
= − h̄2

2m1

∂2φ′1
∂x2

+ V [x, Y (t)]φ′1 +
∂V

∂y
[x, Y (t)]φ1 + ih̄

dY

dt
φ′′1 −

h̄2

2m2
φ′′′1 (27)

involving even higher-order fields (φ′′′1 , etc.). [11]
Or perhaps this particular re-packaging of the structure in the “big” wave function – i.e., this

particular way of sorting the structure that is left out of the BDSQ – is not ideal, and some other
method will work better. Sorting this out remains a work in progress. But there should certainly
exist some sensible, converging expansion which moves the BDSQ approximation toward the
exact results by introducing additional beables which capture (what is described in ordinary
QM as) entanglement.

Stepping back, though, the BDSQ (and the gestured-at program of pushing beyond the BDSQ
to more accurate pilot-wave approximation techniques) can be seen as a uniquely Bohmian
alternative to various existing approximation techniques (for example, density functional theory
and Hartree-type methods) which break apart intractable N -particle quantum systems into
(something like) N single-particle systems, each responding to some appropriately-averaged
version of the other N−1 particles. In the same way that the specifically Bohmian semi-classical
approximation holds some promise of computational benefits compared to more orthodox
treatments, so I think the BDSQ deserves further thought and attention.
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Figure 6. An ensemble of Bohmian trajectories for a double-slit experiment. Each (say)
electron, in the pilot-wave picture, comprises a wave – which goes through both slits and
produces an interference pattern – as well as a literal particle whose motion is “so influenced
[by the interference pattern in the wave] that the particle does not go where the waves cancel
out, but is attracted to where they cooperate.” [12]

6. Discussion
Although I am quite interested in the potential practical applications (to computationally
difficult many-particle systems) of these Bohmian approximation techniques, I also find the
program outlined here interesting for the light it may shed on the questions, about the nature of
the quantum state, raised at the beginning. Recall, for example, that the only really troubling
feature of the de Broglie - Bohm pilot-wave theory is the involvement of the universal wave
function. This is, to me, a very strange kind of thing (living as it does in the abstract
configuration space) and (since its dynamics seem so comparable to the fields of classical physics)
I never really got the hang of interpreting it as a ‘law’.

The program outlined above, though, suggests the possibility of reformulating the pilot-
wave theory in terms of single-particle pilot-wave fields (like the CWFs of ordinary Bohmian
mechanics) which can be understood as normal, physical fields on 3-space. Indeed, what I
described in the last section as the BDSQ – but generalized in the obvious way to a system of
N particles, perhaps the entire universe – constitutes a full-fledged, well-formulated, consistent
theory. Of course, we know the theory isn’t right : its empirical predictions will only be correct
for a universe without (what ordinary QM describes as) “entanglement”. But still, in so far
as one’s goal is to think about how one might formulate an empirically viable quantum theory,
in which strange (“non-local beable”) objects like the universal wave function play no role, it
seems like a useful jumping off point.

Let me close by quoting, perhaps somewhat out of context and in a way he might not endorse,
a principle enunciated by Matt Leifer at the workshop:

Explanatory Conservatism: “If there is a natural explanation for a quantum
phenomenon then we should adopt an interpretation that incorporates it.”

For me, this brings to mind Bell’s memorable discussion of the two-slit experiment (See Figure
6):

“Is it not clear from the smallness of the scintillation on the screen that we have to
do with a particle? And is it not clear, from the diffraction and interference patterns,
that the motion of the particle is directed by a wave? De Broglie showed in detail
how the motion of a particle, passing through just one of the two holes in [the] screen,
could be influenced by waves propagating through both holes. And so influenced that
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the particle does not go where the waves cancel out, but is attracted to where they
cooperate. This idea seems to me so natural and simple, to resolve the wave-particle
dilemma in such a clear and ordinary way, that it is a great mystery to me that it was
so generally ignored.” [12]

Surely Bell is correct that this idea – of particles being guided by waves – constitutes an
exceptionally simple and natural explanation of the phenomenon of one-particle-at-a-time two-
slit interference. And so, according to Leifer’s principle, we should adopt an interpretation that
incorporates this idea.

At present, however, it is impossible to do so, because no candidate theory fully incorporating
this idea exists! The pilot-wave theory of de Broglie and Bohm, of course, is in the right
ballpark, but in that theory the wave is the universal wave function – not a “local beable” at
all and in particular not the kind of thing that can “propagat[e] through both holes” in the
two-slit experiment. Unlike the universal wave function, though, the Bohmian conditional wave
function of a single particle is the right kind of thing to play the role of the pilot-wave in this
most-natural explanation of this most-paradigmatic quantum phenomenon.

In closing, I hope I have convinced you that the following is an interesting question: how
could we formulate a realistic, empirically viable quantum theory which posited exclusively local
beables? ... and that the pilot-wave theory and the CWF in particular seem like promising
jumping-off points to try to answer it.
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