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Abstract. A one-dimensional three-fluid model of the plasma-wall transition in front of a 

large, negative, planar electrode is developed. The plasma contains one species of singly 

charged positive ions, Maxwellian electrons and a second group of singly charged negative 

particles. These particles can be either electrons with temperature different than that of the 

basic electron population or singly charged negative ions. The case with a second electron 

population with a high temperature is analyzed and transitions between the low and the high 

solutions are studied. 

1.  Introduction 

Plasmas that contain more than one population of negatively charged particles are of considerable 

importance in many areas of plasma physics. Numerous studies on sheath formation in front of a 

negative electrode immersed in this type of plasmas can be found in the literature due to the great 

practical interest – see, e.g., the long list of references in [1] and [2]. A common approach in these 

studies is that the positive ions are treated by fluid equations, while for the negative particles the 

Boltzmann relation is assumed [2]. In this work, however, the electrons and the second negative 

particle species are also treated by their own set of continuity and momentum exchange equations.  

2.  Model 

It is assumed that the continuity equations and equations of motion are valid for all three species of 

charged particles: 
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The meaning of the symbols is the following: mi is the ion mass, me is the electron mass, m2 is the 

mass of the second negatively charged particle species, ni, ne and n2 are the respective particle 

densities, ui, ue and u2 are the flow velocities, e0 is the elementary charge, Si, Se and S2 are the source 

terms, discussed below, Ai, Ae and A2 are collision terms. In this work the elastic collisions are 

neglected. The electric field E is related to the potential  by E =  and the potential profile (r) 

is determined by the Poisson equation: 
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Here 0 is the permittivity of the free space. Isothermal flow of ions, electrons and second species of 

negative particles is assumed and the gradient pressure terms are expressed using the ideal gas law: 
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Here k is the Boltzmann constant. 

The source terms Si, Se and S2 give the difference between the number of created and annihilated 

charged particles of the respective species per unit volume and per unit time. They can be functions of 

space (and time) and in models, like the one presented in this work, it is usually assumed that they are 

given functions of space. Ionization and annihilation can have various physical mechanisms. In this 

work, it is assumed that the source terms are constants independent of the space coordinates. Of 

course, the consistency of the model requires that Si = Se + S2 since in the steady state the same number 

of positive and negative particles must be created and annihilated in any selected unit volume. The 

source terms are therefore written in the following form: 
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Here  is effective time between two consecutive creations of a charged particle, while ,  and  give 

the number of created particles of respective species in unit volume. Note that , , , and  are all 

positive constants and their values are such that the subtraction of annihilated particles from the 

created particles has already been taken into account. Steady state is assumed, so all partial derivatives 

over time are neglected. It is assumed that on one side the plasma is bounded by a large planar 

electrode (collector), which is perpendicular to the x axis. The model is one-dimensional, so gradient 

and Laplace operators are replaced by 
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and the electric field has one component only given by:  
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When (6) – (9) are taken into account, and the collision terms Ai, Ae and A2 are neglected, equations 

(1) – (5) are written in the following form:  
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If one is interested only in the quasi-neutral pre-sheath region, the Poisson equation (14) is replaced by 

the following neutrality condition:  
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The following variables have been introduced:  
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Here n0 is the plasma density in the unperturbed region far from the collector and c0 is called the 

normalizing velocity; it is not the same as the ion sound velocity cS, which is in normalized units (16) 

– (18) given by [1]: 
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where  is the “screening temperature” normalized to Te and is given by [3,1]: 

 

 2

2

.e

e

N N

dN dN

d d







 

  (20) 

3.  Results 

In the top graphs of figure 1, solutions of the system (10) – (14) are shown for the following 

parameters:  =  = 1/1836 (protons),  = 25,  = 0, si = s2 = 1, se = 0,  = 10
-5

; and boundary 

conditions, given at X = 0, Ni(0) = 1, N1(0) = 0.736, N2(0) = 0.264, Vi(0) = 10
-7

, Ve(0) = V2(0) = 0, (0) 

= 0 and d/dX(0) = 0. The selection of the parameters is not motivated so much by some specific 

physical situation, but rather by our intention to illustrate some properties of the model. For example, 

in a recent paper [4], Langmuir probe measurements in COMPASS tokamak and TJ-II stellarator have 

been presented, where it has been shown that in both machines in the vicinity of the last closed flux 

surface the electron distribution function is bi-Maxwellian with the higher electron temperature 3 – 5 

times larger than the lower one and the density of the lower electron temperature population several 

times larger than the density of the high temperature electron population. The system (10) – (14) is 

integrated in the positive X direction towards the collector. The system (10) – (14) has three 

singularities [5]. The integration of the system (10) – (14) breaks down when either Vi(X) drops 

below  , or Ve(X) exceeds
1/2

, or V2(X) exceeds / . In the case shown in Fig. 1, the last 

condition is fulfilled. In plot (a) the potential profile (X) is shown, in graph (b) density profiles 

Ni(X), N1(X) and N2(X) are displayed, in graph (c) the profile of the screening temperature (X) is 

presented and in graph (d) the profiles of the ion velocity Vi(X) and ion sound velocity VS(X) are 

shown. All the profiles exhibit oscillations. Because of this, the ion velocity Vi(X) and ion sound 

velocity VS(X) profiles have many intersections and it is not possible to say which of these points 

represents the sheath edge. Thus, the system (10) – (13) and (15) is solved with the same parameters  
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Figure 1. Solutions of the system (10) – (14) in the top graphs and of the system (10) – (13), (15) in 

the bottom graphs. Parameters and boundary conditions are the same in both cases:   =  = 1/1836, 

 = 25,  = 0, si = s2 = 1, se = 0,  = 10
-5

, Ni(0) = 1, N1(0) = 0.736, N2(0) = 0.264, Vi(0) = 10
-7

, 

Ve(0) = V2(0) = 0, (0) = 0 and d/dX(0) = 0. 

 

 
Figure 2. The sheath edge position XSE, the respective potential (XSE) and the ion velocity at the 

sheath edge Vi(XSE), obtained from the system (10) – (13) and (15), plotted versus N2(0) at three 

different values of . In the bottom right plot N2(0), where the jump between the low and the high 

solution occurs, is plotted versus  for two different ion temperatures . 
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and boundary conditions – bottom plots (e) – (h). The system (10) – (13) and (15) also has several 

singular points. Their analysis is beyond the scope of this work. Here we are only interested in the 

singularity of the system (10) – (13) and (15), which occurs when the Bohm criterion [6], Vi = VS, is 

fulfilled – plot (h). The position, where this occurs, is the sheath edge and is labeled by XSE. 

Figure 2 presents the sheath edge position XSE, the respective potential (XSE) and the ion velocity 

at the sheath edge Vi(XSE), obtained from the system (10) – (13) and (15), plotted versus N2(0) at three 

different values of . The other parameters and boundary conditions are:  =  = 1/1836,  = 0, 

si = s2 = 0.1, se = 0,  = 10
-5

, Ni(0) = 1, N1(0) = 1 N2(0), Vi(0) = 10
-7

, Ve(0) = V2(0) = 0, (0) = 0 and 

d/dX(0) = 0. All the curves exhibit sharp jumps at the transition between the “low” and the “high” 

solution. In the bottom right plot N2(0), where the jump between the low and the high solution occurs, 

is plotted versus  for two different ion temperatures . 

4.  Conclusions 

A three-fluid one-dimensional model of the plasma-wall transition in front of a planar negative 

electrode immersed in plasma that contains two species of negatively biased particles is presented. The 

case with two-temperature electrons is analyzed. Depending on the ratio between the densities and 

temperatures of the two groups of electrons, the system of equations (10) – (14) can predict 

multivalued Bohm criterion, i.e. several positions and potentials of the sheath edge. But if the Poisson 

equation (14) is replaced by the neutrality condition (15), the integration of the system (10) – (13) with 

(15) in most cases breaks down at the sheath edge, where the plasma neutrality breaks down. The 

model can also be used for the analysis of plasma that contains electrons and singly charged negative 

ions. 

Acknowledgements 

This work has been partially supported by Grant No. P2- 0073 of the Slovenian Research Agency and 

CEEPUS CIII-AT-0063-10-1415 mobility scheme. 

References 

[1] Gyergyek T, Jurčič-Zlobec B, Čerček M and Kovačič J 2009  Plasma Sources Sci. Technol. 18 

035001 

[2] Fernandez Palop J I, Ballesteros J, Hernandez M A and Morales Crespo R A 2007 Plasma 

Sources Sci. Technol. 16 S76 

[3] Riemann K U 1995 IEEE Trans. Plasma Sci. 23 709 

[4] Popov Tsv, Dimitrova M, Pedrosa M A, López-Btuna D, Horacek J, Kovačič J, Dejarnac R, 

Stöckel J, Aftanas M, Böhm P, Bilkova, Hidalgo C and Panek R, 2015 Plasma Phys. 

Control. Fusion 57 115011 

[5] Gyergyek T and Kovačič J 2015 Physics of Plasmas 22 093511 

[6] Bohm D 1949 Minimum ionic kinetic energy for a stable sheath in The characteristics of 

electrical discharges in magnetic fields,  eds. A Guthrie and R K Wakerling (McGraw-Hill, 

New York) Chap. 3 77-86 

 

 

19th International Summer School on Vacuum, Electron and Ion Technologies (VEIT2015) IOP Publishing
Journal of Physics: Conference Series 700 (2016) 012016 doi:10.1088/1742-6596/700/1/012016

5


