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Abstract. Three-dimensional calculations of the electron source in plasmas of the TJ-II 
stellarator (Madrid, Spain) are performed using the Monte Carlo code EIRENE. When 
possible, the results are compared with diagnostic measurements in equivalent coordinates. 
Examples are shown for the Hα light evolution during a plasma collapse, CX fluxes, neutrals 
distributions along diagnostic chords and line radiation emissivities. 

1.  Introduction 
The evaluation of sources in magnetic confinement fusion devices is a complex task. In most cases, 
the source terms do not conform to flux surfaces and three-dimensional (3D) calculations are required. 
Particle sources, e.g., involve the motion of neutrals through the vacuum vessel (VV) and the 
contained plasma, together with atomic physics and interaction with the first wall. In medium size or 
large tokamak plasmas, one-dimensional calculations can give a fair approximation of the neutrals 
distribution and the corresponding electron source [1], although detailed calculations near the divertor 
demand 3D calculations. Matters are commonly more complicated in stellarators, like the TJ-II Heliac 
[2], where the plasma-wall interaction is strong in a complicated VV geometry. For instance, in 
addition to the possible insertion of poloidal limiters, typical TJ-II plasmas are limited by the “hard 
core”, a metallic case that protects the central conductors all along the toroidal coordinate. 

In this paper we present calculations that require 3D neutrals distributions inside the VV. They are 
necessary for comparison with experiments that involve specific geometries, like gas puffing valves, 
diagnostic chords or solid angles through which radiation is collected. Examples are given for (i) the 
evolution of Hα light during a radiative collapse following the L-H transition, (ii) CX spectra at a 
specific time of a discharge, (iii) electron source from ionization of neutrals in relation with electric 
probe measurements and (iv) helium 667 mm light recorded near a gas-puffing valve in He plasmas. 

2.  Calculation methods and results 
The calculations presented here were conducted using the EIRENE code [3] adapted to the TJ-II 
geometry [4]. Aside from the geometrical inputs for the TJ-II VV, valves, NBI ports and diagnostic 
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viewing lines, there are three decisive inputs that come from the plasmas under study: gas puffing, 
plasma distributions of density and temperature, and ion outflows. The plasma distributions are 
provided as radial profiles, which means that such magnitudes are flux-surface functions. The 
outflows, or number of particles per second escaping from the plasma, are then obtained from the ion 
distribution and the net particle confinement time, τp. In the TJ-II, this magnitude has been estimated 
experimentally [5], but in the absence of dedicated experiments it can be also estimated through the 
use of transport codes coupled with EIRENE if some experimental information, like recycling 
coefficient [6], Hα [7] or CX spectra [8] can be provided. It is often the case that other sources, like 
NBI flows, must be taken into account. One difficulty here is that the NBI deposition and shine-
through depend on the neutrals distribution itself, which calls for a coupling of different codes to 
transport calculations [9]. For TJ-II studies of particle and energy transport, we commonly use 
transport models for the density evolution that allow reproducing the experimental density profiles. 
The particle sources are updated with enough frequency using the evolving plasma profiles, τp and 
NBI deposition profiles. In this way, the obtained sources are not only compatible with all the 
provided experimental information, but also with transport. For example, if the plasma is in steady 
state, the source and confinement times provided are compatible with such a steady state, which may 
not happen if the evaluation of sources is decoupled from transport. 

Figure 1 gives an idea of the geometry of the TJ-II device. It shows the distributions of neutral 
hydrogen molecules and atoms obtained using parameters from TJ-II discharge #34517, a low-density 
(~1.1×1019 m–3) NBI plasma without additional gas puffing. The structure of the TJ-II ports can be 
fairly well seen in the distribution of molecules; and the different TJ-II sub-sectors, eight per each of 
the four periods, can be seen in both distributions. This stresses the importance of the geometry to 
evaluate diagnostic measurements as in the examples that follow. 

 

 

Figure 1. Space density of hydrogen molecules (left, visible in 0.5–1.0×1010 m–3 range) and atoms 
(right, 1.0–1.5×109 m–3) based on TJ-II #34517 plasma parameters following 24×106 trajectories. Note 
TJ-II ports filled with molecules and structure of TJ-II sectors of the VV also visible in the atoms 
distribution. 3D plots are produced with the VisIt software [10]. 

2.1.  Limiter insertion and wall coating 
Figure 2.a shows the effect of inserting two poloidal limiters under the conditions of high-density NBI 
plasma. Two monitors are simulated: one looking at one of the limiters, the other one far from them. 
When the limiters reach the LCFS position (vertical line) the monitors behave oppositely. The signal 
increases considerably for the monitor oriented towards one limiter, while it decreases for the other 
monitor due precisely to the plasma flow intercepted by the limiters. Figure 2.b shows the atom 
density along the top line of the perpendicular CX diagnostic for identical calculations except that the 
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coating is changed from B to Li. The electron density along the chord is also shown to give an 
indication of the portion of the chord intersecting the plasma. The higher recycling inherent to           
B-coating is manifested mainly in the atom density near the LCFS on the diagnostic side of the chord. 
 

  

Figure 2. (a) Calculated effect of the insertion of two limiters (sectors A3 and C3) on the Hα light at 
two locations in NBI plasma: TJ-II sector C4 looking at one limiter; and sector D4 far from both 
limiters. (b) Effect of coating, B or Li, on the neutrals density along a chord that intersects the plasma 
near its center for an ECH plasma (τp = 5 ms). The electron density along the chord is shown for 
reference. 

 
 

Figure 3. Calculated evolution of the 
density profile (top) matching experimental 
measurements, and corresponding electron 
source profiles from coupled Monte Carlo 
codes (bottom). Note the different scales 
for the NBI (left) and total (right) electron 
sources. Net integral values are indicated 
for the final profiles (t = 1164 ms). 

 2.2.  Sources and diagnostics in NBI plasmas 
Calculations that include particle sources from 
NBI require a previous estimate of the spatial 
distribution of neutrals. These distributions are 
then used to take CX losses into account in 
Monte Carlo methods [11] for NBI beams, 
again adapted to the TJ-II (see [12] and 
references therein), so the corresponding 
particle source is included in a consistent way 
despite possible uncertainties, such as gas 
desorption from direct impact on the NBI 
protection tiles [13]. Once the neutrals 
distribution is obtained (e.g. figure 1), the NBI 
contribution to the net particle source can be 
calculated. Figure 3 shows that the deposition 
of particles coming from the neutral beams is 
small in comparison with the recycling sources. 
The calculations belong to TJ-II discharge 
#19033 at even times from approximately the 
start of NBI (1090 ms) to the time of maximum 
diamagnetic energy (1165 ms, Wdia ≈ 3 kJ) 
following the increasing density profiles. The 
discharge corresponds to balanced NBI up to   
≈ 0.6 MW of deposited power according to the 
calculations. The integral values of the source 
profiles, indicated for t = 1164 ms, show that 
the net electron source coming from NBI 
deposition is about 20 times smaller than the 
recycling source in this case. 
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The behavior of Hα emissivity as recorded by different monitors during the radiative collapse can 
be explained based on the calculated sources as explained above. Figure 4.a shows the time trace of 
the Hα monitor located in sector A3 of the TJ-II device in a discharge similar to the one in figure 3, 
where an L-H transition happens close to the radiative collapse due to the increasing density (see [8] 
for details). The simulated evolution of the intensity for the same Hα monitor matches approximately 
the experimental one: it decreases at the L-H transition, but the cooling produced by the almost 
immediate collapse makes the neutrals density grow giving rise to a large increment of Hα light.     
CX spectra were recorded during the discharge, so that a comparison with calculated values could also 
be performed (figure 4.b). In this case, two thermal populations were required to explain the curved 
energy distribution in a logarithmic scale: 0.4% of the ions have a temperature ~ Te, close to three 
times the bulk ion temperature. 

 
Figure 4. (a) Evolution of Hα light during a radiative collapse following the L-H transition (vertical 
dashed line) and the calculated intensity for the same Hα monitor. The double arrow indicates the 
uncertainty in Hα calibration. (b) CX spectrum obtained from a neutral particle analyzer and 
corresponding EIRENE calculation considering two thermal populations. The lines correspond to two 
τp values differing by 50%. 
 
2.3.  Edge sources and probes 
Recent work has shown bi-Maxwellian distributions of electrons in the edge of tokamak and stellarator 
plasmas [14]. One population seems to be the expected thermal component while the other, cooler, is 
found with energies in the order of ~ 5 eV, but with a higher density. The calculation of neutrals 
distribution in the sector where the electric probe is inserted (arrow in figure 5.a) shows an 
approximate flux-surface distribution of the source density term except near the hard-core region, 
where the plasma is limited by the wall. The flux-surface averaged source density is plotted in figure 
5.b, together with the measured electron density that corresponds to each of the two populations 
mentioned above: high (squares) and low (triangles) temperature. Figure 5.c represents the atom and 
molecule distributions along a vertical chord passing through the probe. For reference, the electron 
density is also given for the same chord in the plasma region (between vertical dashed lines). A small 
shady rectangle indicates the range covered in figure 5.b. Note that the molecule density decreases as 
the chord approaches the LCFS from outside the plasma, opposite to the atom density. 

2.4.  Line radiation emissivities 
Finally we show a first comparison with measurements taken by a tangential camera set so as to 
collect the emissivity of He-lines from the plasma region above the helium-puffing valve. Appropriate 
ratios of He lines are related with the electron density and temperature – this technique can provide 
their spatio-temporal evolution [15]. The data in figure 6 were collected in ECRH TJ-II plasma where 
He was puffed at 2 cm from the LCFS (r = a). The figure corresponds to the emissivity of the 667 nm  
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Figure 5. Calculation for a TJ-II discharge in ECH phase. (a) Electron source density distribution at 
the toroidal angle that corresponds to the location of the electric probe; (b) corresponding radial 
profile including measurements of the density of thermal and sub-thermal electrons from the probe 
[14]; and (c) calculated atom and molecule densities along a vertical chord that passes along the probe 
insertion axis – the ne profile along the chord is also shown. 
 

 
Figure 6. Emissivity of line radiation from He (667 
nm) as a function of vertical distance to the LCFS 
above the He-puffing valve (red dots), and EIRENE 
calculation for the corresponding simulated diagnostic 
(blue circles). The experimental error bars represent the 
uncertainty in the localization of the LCFS and 10 % 
for the measurements. 

 

 He-line received in viewing lines that 
pass vertically above the gas puffing 
valve. We overplot the emissivities 
calculated for the equivalent numerical 
diagnostic using the experimental 
density and temperature profiles as 
input for EIRENE. The experimental 
emissivities are not calibrated; they 
were rescaled to match the calculated 
values. Therefore the confinement 
time in the calculation is not critical 
and it was fixed to a reasonable value, 
5 ms. 

Ongoing research is dedicated to 
refine the measurements and 
calculations similar to those shown 
here, due to their importance to 
magnetic fusion research. The 
development of new numerical 
diagnostics that require neutral 
distributions, such as Hα spectral 
analysis [16,17], is encouraged. 
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3.  Conclusions 
Calculations that require 3D distributions of neutrals around the plasma-edge region are calculated, 
based on coupled transport and Monte Carlo codes, for the plasma parameters and geometry of the  
TJ-II stellarator. They are compared with experimental results (evolution of Hα light during a 
radiative collapse following the L-H transition, CX spectra, helium 667 mm light recorded near a   
gas-puffing valve in He plasmas) or used to interpret data (Hα emissivities in different monitors, 
neutrals densities along diagnostic chords, electron source from ionization of neutrals in relation with 
electric probe measurements). 
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