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Abstract. Sparsity constraints are now very popular to regularize inverse problems. We
review how sparsity can be used to solve inverse problems such as inpainting, deconvolution or
blind source separation.

1. Introduction
Many data processing problems in astrophysics can be formalized as a linear inverse problem,

Y = HX •N , (1)

where Y are a set of noisy measurements, N is the unknown noise/error term, and the • operator
translates the way the noise contaminates the data (e.g. “+” for additive noise). This noise/error
can be either a stochastic measurement noise induced by the sensor (e.g. additive Gaussian noise,
Poisson noise, or mixed Gaussian and Poisson), or a deterministic perturbation due, for example,
to an imperfect forward model. X is the solution of our problem, and H is a linear operator.
Finding X is an inverse problem.

Typical cases of such inverse problems are:

• Deconvolution: If the optical system is linear and shift-invariant, the relation between the
data Y and the unknown X in the same coordinate frame is a convolution by a blurring
kernel. H is the point spread function, PSF, of the optical system. We want to determine
X knowing Y and H. This deconvolution problem has led to a large amount of work, the
main difficulties being the existence of: (i) a cut-off frequency of the point spread function,
and (ii) the additive noise.

• Blind Deconvolution: It is similar to the deconvolution problem, except the point spread
function, i.e. matrix H, is unknown. Hence. we want to determine X and H knowing Y .

• Myopic deconvolution: It is an intermediate problem between deconvolution and blind
deconvolution, the PSF H is partially known.

• Superresolution: H is the convolution by a blurring kernel followed by a sub-sampling. The
goal is to recover spatial frequency information outside the spatial bandwidth of the data
formation system.

• Inpainting: Missing data is a recurrent problem in astronomical data processing. H is a
pixelwise multiplication by a binary mask; 1 for the pixels to be kept and 0 otherwise.
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• Radio-Interferometry Image Reconstruction: this is a specific case of the deconvolution
problem. Indeed the observed data, called visibilities, correspond to a subset of the Fourier
component of the unknown X. The PSF, called Dirty Beam, is not compact in the direct
space, and contains many zero in the Fourier domain.

• Blind Source Separation: In the blind source separation (BSS) setting, the instantaneous
linear mixture model assumes that we are given m observations Y = [yT1 , · · · , yTm]T where
each (yi)i=1,··· ,m is a row-vector of size t; each measurement is the linear mixture of n source
processes . As the measurements are m different mixtures, source separation techniques
aim at recovering the original sources X = [xT1 , · · · , xTn ]T by taking advantage of some
information contained in the way the signals are mixed in the observed data. The linear
mixture model is rewritten in matrix form, Y = HX+N , where Y is the m×t measurement
matrix (i.e. observed data), X is the n× t source matrix and H is the m×n mixing matrix.
H defines the contribution of each source to each measurement. An m × t matrix N is
added to account for instrumental noise or model imperfections. Similarly to the blind
deconvolution, the H matrix is not known.

• Image reconstruction: an image is formed from projections.

When the inverse problem has not a unique and stable solution, it is an ill-posed problem, and a
regularization is necessary to reduce the space of candidate solutions, and we need to incorporate
some prior knowledge on the typical structure of the original signal X.

This prior information accounts typically for the “smoothness” class of the solution and can
range from the uniform smoothness assumption to more complex knowledge of the geometrical
structures of the solution. A very popular regularization in astronomy is the well-known Bayesian
maximum entropy method (MEM), which is based on the principle that we want to select the
simplest solution which fits the data. Sparsity is an alternative to describe the simplest solution,
and has emerged as very powerful approach for regularization [1].

Sparse recovery involves four main ingredients which are the keys for its success. These
ingredients are:

• Data representation though the use of a dictionary: this will be discussed in next
section.

• The noise modeling: having the right dictionary is only a part of the story and is not
enough. In most inverse problems, one needs to disentangle the useful signal/information
from the noise. This requires to take properly into account the noise behavior in the observed
data. Different kinds of noise models such as Gaussian, Poisson, mixture of Gaussian and
Poisson, correlated noise, etc., can be used to derive the distribution of the coefficients
in the chosen dictionary and therefore to detect, with a given confidence level, significant
coefficients that should be used to reconstruct the signal of interest.

• The variational problem and minimization algorithm: piecing together the first
ingredient and the second one (i.e. regularization and data fidelity), solving the inverse
problem at hand as solving a variational (optimization) problem. To solve the obtained
optimization problem, very general class of optimization schemes can be used, namely
proximal splitting algorithms, that are fast, easy to implement and enjoy provable
convergence. A very efficient proximal minimization method is presented in Section 5.3.

• The choice of parameter(s): variational formulation of inverse problems involve
parameters that must be chosen. The scientist does not have to choose these parameters
based on a tedious trial-and-error, by running many times the algorithm with a range
of parameters. Furthermore, one definitively does not want to make scientific conclusions
based on an ad-hoc parameter. We show in Section 5.4 how these parameters can be derived
from the noise modeling.
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A brief tour of sparsity is given in Section 2, and the different kind of disctionaries are
discussed in Section 3. Specific inverse problems will be addressed, such as denoising and
deconvolution in Sections 4 and 5, inpainting in Section 6, and blind source separation in
Section 7.

2. Sparsity
A signal X = (X[1], . . . , X[N ]) considered as a vector in RN , is said to be sparse if most of its
entries are equal to zero. If k number of the N samples are equal to zero, where k � N , then
the signal is said to be k-sparse. In the case where only a few of the entries have large values and
the rest are zero or close to zero the signal is said to be weakly sparse (or compressible). With
a slight abuse of terminology, in the sequel, we will call compressible signals sparse. Generally
signals are not sparse in direct space, but can be sparsified by transforming them to another
domain. Think for instance of a purely sinusoidal signal which is 1-sparse in the Fourier domain,
while it is clearly dense in the original one. In the so-called sparsity synthesis model, a signal
can be represented as the linear expansion

X = Φα =
T∑
i=1

φiα[i] , (2)

where α[i] are the synthesis coefficients of X, Φ = (φ1, . . . , φT ) is the dictionary, and φi are
called the atoms (elementary waveforms) of the dictionary Φ. In the language of linear algebra,
the dictionary Φ is a N × T matrix whose columns are the atoms normalized, supposed here to
be normalized to a unit `2-norm, i.e. ∀i ∈ [1, T ], ‖φi‖22 =

∑N
n=1 |φi[n]|2 = 1 1. A function can

be decomposed in many dictionaries, but the best dictionary is the one with the sparsest (most
economical) representation of the signal. In practice, it is convenient to use dictionaries with fast
implicit transform (such as Fourier transform, wavelet transform, etc.) which allow us to directly
obtain the coefficients and reconstruct the signal from these coefficients using fast algorithms
running in linear or almost linear time (unlike matrix-vector multiplications). The Fourier,
wavelet and discrete cosine transforms provide certainly the most well known dictionaries.

Sparsity as a very flexible model to represent data
Most natural signals however are not exactly sparse but rather concentrated near a small set.
Such signals are termed compressible or weakly sparse in the sense that the sorted magnitudes∣∣α(i)

∣∣, i.e. ∣∣α(1)

∣∣ > ∣∣α(2)

∣∣ , ..., > ∣∣α(t)

∣∣, of the sequence of coefficients α decay quickly according

to a power law, i.e.
∣∣α(i)

∣∣ ≤ Ci−1/r , i = 1, . . . , t, where C is a constant. The larger r is, the
faster the amplitudes of coefficients decay, and the more compressible the signal is. In turn,
the non-linear `2 approximation error of α (and x) from its M largest entries in magnitude also
decrease quickly. One can think, for instance, of the wavelet coefficients of a smooth signal away
from isotropic singularities, or the curvelet coefficients of a piecewise regular image away from
smooth contours. A comprehensive account on sparsity of signals and images can be found in
[2].

3. Dictionaries
Obviously, the best dictionary is the one which leads to the sparsest representation. Hence we
could imagine having a huge overcomplete dictionary (i.e. T � N), but we would be faced
with prohibitive computation time cost for calculating the α coefficients. Therefore there is a
trade-off between the complexity of our analysis step (i.e. the size of the dictionary) and the

1 The lp-norm of a vector X, p ≥ 1, is defined as ‖X‖p =
(∑

i |X[i]|p
)1/p

, with the usual adaptation
‖X‖∞ = maxi X[i].

International Meeting on High-Dimensional Data-Driven Science (HD3-2015) IOP Publishing
Journal of Physics: Conference Series 699 (2016) 012010 doi:10.1088/1742-6596/699/1/012010

3



computation time. Some specific dictionaries have the advantage of having fast operators and
are very good candidates for analyzing the data. The Fourier dictionary is certainly the most
famous, but many others have been proposed in the literature such as wavelets [3], ridgelets [4],
curvelets [5, 6] or shearlets [7], to name only a few.

Toward Morphological Diversity
The morpholocal diversity concept was introduced in [8] in order to model a signal as a a finite
linear mixture, each component of the mixture being sparse in a given dictionary. The idea is
that a single transformation may not always represent an image well, especially if the image
contains structures with different spatial morphologies. For instance, if an image is composed of
edges and a locally oscillating texture, we can consider edges to be sparse in the curvelet domain
while the oscillating texture is better sparsified in the local DCT domain. It has been shown
by several authors that choosing a dictionary as a combination of several sub-dictionaries, each
sub-dictionary having a fast transformation/reconstruction, allows us to enjoy the advantages
of all sub-dictionaries, still having fast and efficient algorithms.

Adaptive representations
Different approaches have also been proposed in order to build a dictionary directly from the
data. This is the case in learned dictionaries [9], for instance using e.g. the KSVD algorithm
[10], the grouplet decomposition [11] or the GMCA method for multichannel/hyperspectral data
[12].

4. Sparse regularization for inverse problems
In the following, for a vector z we denote ‖z‖pp =

∑
i |zi|p for p ≥ 0. In particular, for p ≥ 1,

this is the p-th power of the `p norm, and for p = 0, we get the `0 pseudo-norm which counts
the number of non-zero entries in z. The `0 regularized problem amounts to minimizing

α̃ ∈ argminα ‖Y −HΦα‖22 + λ‖α‖0, (3)

where λ is a regularization parameter. A solution X̃ is reconstructed as X̃ = Φα̃. Clearly, the
goal of Eq. 3 is to minimize the number of non-zero coefficients describing the sought after signal
while ensuring that the forward model is faithful to the observations.

Solving Eq. 3 is however known to be NP-hard. The `1 norm has been proposed as a tight
convex relaxation of Eq. 3 leading to the minimization problem

α̃ ∈ argminα ‖y −HΦα‖22 + λ‖α‖1, (4)

where λ is again a regularization parameter different from that of Eq. 3. There has been
a tremendous amount of work where researchers spanning a wide range of disciplines have
studied the structural properties of minimizers of Eq. 4 and its equivalence with Eq. 3. Eq. 4 is
computationally appealing and can be efficiently solved, and it has also been proved that under
appropriate circumstances, Eq. 4 produces exactly the same solutions as Eq. 3, see e.g., [13].

5. Astronomical Image Restoration
5.1. Denoising
The denoising problem corresponds to the case where H is the identity (i.e. Y = X +N). The
classical modus operandi is then to first apply the transform operator to the noisy data Y , then
apply a nonlinear estimation rule to the coefficients (each coefficient individually or as a group of
coefficients), and finally compute the inverse transform to get an estimate X̃. In brief, A classic
approach is to derive the threshold t from the noise modeling. Many thresholding or shrinkage
rules have been proposed. Among them, hard and soft thresholding are certainly the most well
known.
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5.2. Hard and Soft Thresholding
Once coefficients α = ΦtY have been calculated, Hard thresholding [14, 15] consists of setting to
zero all coefficients whose magnitude is less than a threshold t:

α̃k = HardThresht(αk) =

{
αk if |αk| ≥ t,

0 otherwise.
(5)

Hard thresholding is a keep-or-kill procedure.
Soft thresholding [16, 17] is defined as the kill-or-shrink rule:

α̃k =

{
sign(αk)(|αk| − t) if |αk| ≥ t,

0 otherwise.
(6)

The coefficients above the threshold are shrunk toward the origin. This can be written in the
compact form

α̃k = SoftThresht(αk) = sign(αk)(|αk| − t)+ , (7)

where (·)+ = max(·, 0).

Thresholding as a Minimization Problem Suppose that Φ is orthonormal. It can be proved
that equations Eq. 6 and 7 are the unique closed form solution to the following minimization
problems for a hard or soft thresholding with a threshold t:

α̃ = argmin
α

‖Y − Φα‖2 + t2 ‖α‖0 Hard thresholding (8)

α̃ = argmin
α

1
2 ‖Y − Φα‖2 + t ‖α‖1 Soft thresholding (9)

Therefore, hard and soft thresholding have been used as building blocks to derive fast and
efficient iterative thresholding techniques to minimize more complex inverse problems with
sparsity constraints, such as inpainting and deconvolution.

For the orthogonal wavelet transform, hard thresholding is known to result in a larger variance
estimate, while soft thresholding with the same threshold level creates undesirable bias because
even large coefficients lying out of noise are shrunk. In practice, hard thresholding is generally
preferred to soft thresholding.

5.3. Deconvolution
In a deconvolution problem, when the sensor is linear, H is the block Toeplitz matrix. A
first iterative thresholding deconvolution method was proposed in [18] which consists in the
fowollowing iterative scheme:

X(n+1) = X(n) +HT
(
WDenΩ(n)

(
Y −HX(n)

))
(10)

where WDen is an operator which performs a wavelet thresholding, i.e. applies the wavelet
transform of the residual R(n) (i.e. R(n) = Y − HX(n)), threshold some wavelet coefficients,
and applies the inverse wavelet transform. Only coefficients that belong to the so called
multiresolution support Ω(n) [18] are kept, while the others are set to zero. At each iteration,
the multiresolution support Ω(n) is updated by selecting new coefficients in wavelet transform
of the residual which have an absolute value larger than a given threshold. The threshold is
automatically derived assuming a given noise distribution such as Gaussian or Poisson noise.
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More recently, it was shown [19, 20, 21] that a solution of (4) can be obtained through the
following iteration:

α(n+1) = SoftThreshλ

(
α(n) +ΦTHT

(
Y −HΦα(n)

))
, (11)

with ‖H‖ = 1. In the framework of monotone operator splitting theory, it is called Forward-
Backward (FB) splitting algorithm and is classical gradient projection method for constrained
convex optimization. It was shown that for frame dictionaries, it converges to the solution [21].
In the last ten years, many new optimization methods have been proposed to perform a sparse
regularization in a very more efficient way. For instance, the primal-dual splitting algorithm
of [22] can handle properly both sparse and positivity constraints, and leads to the following
scheme:

(i) Initialization: Choose τ > 0 and σ > 0 such that 1− τσ ‖Φ‖2 > ‖H‖2 /2; A sequence of
relaxation parameters µn ∈]0, 1]; (x0, u0).

(ii) Main iteration

• pn+1 =
(
xn − τΦun + τHT (y −Hxn)

)
+
;

• qn+1 = (I− SoftThreshλ) (un + σΦ(2pn+1 − xn));
• (xn+1, un+1) = µn(pn+1, qn+1) + (1− µn)(xn, un).

The parameter µn is a relaxation one that can be used to accelerate the algorithm. In the
unrelaxed case, i.e. µn = 1 for all n, we obtain (xn+1, un+1) = (pn+1, qn+1).

5.4. Regularization parameters
Once the dictionary and the minimization method are chosen, a final problem remains: choosing
parameters that are needed to control the algorithm. Most minimization methods, using l0 and
l1, have a single thresholding step, where coefficients in the dictionary have to be soft or hard-
thresholded using a threshold value, which is a value λ, common to projection in Φ. This
parameter controls the trade-off between the fidelity to the observed visibility and the sparsity
of the reconstructed solution. In real applications however, the sought-after coefficients are likely
to have very different scalings, and it would be wiser to adapt the regularization parameter to
each coefficient. This corresponds to solving

min
α

1

2
‖y −HΦα‖2 +

T∑
i=1

λi |α[i]| . (12)

where T is the size of the vector α (i.e. the number of coefficients).

5.4.1. Noise driven strategy Recall that in the iterative schemes discussed earlier, the noise
impacts the solution through the residual R(n) = Y −HΦα(n) and its backprojected coefficients
α(R) = ΦTHTR(n). If we see the regularization as a denoising step, then we can consider that λi

should be related to the noise in α(R), λi = kσi , where k is generally chosen between 3 and 5,
and σi is the noise standard deviation on the coefficient α[i]. If the noise is zero-mean additive
with known covariance matrix Σ, then σi is the square root of the ith entry on the diagonal
of the covariance matrix ΦTHTΣHΦ. Alternatively, if we know how to simulate a set of Nr

realistic noise realizations, we can calculate the coefficients α(r) = ΦTHTZr for each realizations
Zr, and we have:

σi =

√√√√ 1

Nr

Nr∑
r=1

α(r)[i]2 .
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5.4.2. Residual-driven strategy for subband transforms In [23], it is proposed to fix the threshold
only from the noise distribution at each wavelet scale j. A similar approach can be used for
multiscale geometric transforms such as the curvelets.

Suppose that H is a convolution operator, Φ corresponds to a band-pass transform with J

bands, and the noise N is stationary an Gaussian. Then α
(N)
j = (ΦTHTN)j in each band j is

also Gaussian and stationary. We can therefore only consider one regularization parameter per
band rather than one per coefficients, and Eq. 12 becomes

min
α

1

2
‖y −HΦα‖2 +

J∑
j=1

λj ‖αj‖1 , (13)

where αj are the coefficients in the band j and J is the number of bands. We could then use

the α
(R(n))
j to estimate standard deviation σj . As R(n) may contain also structure and not only

noise, a more robust approach is to use the MAD (Median of Absolute Deviation) estimator.
Then we have

σj = MAD(α
(R(n))
j )/0.6745 = median(

∣∣∣α(R(n))
j −median(α

(R(n))
j )

∣∣∣)/0.6745 ,

6. Inpainting
Missing data are a standard problem in astronomy. They can be due to bad pixels, or image
area we consider as problematic due to calibration or observational problems. These masked
areas lead to many difficulties for post-processing, especially to estimate statistical information
such as the power spectrum or the bispectrum. The inpainting technique consists in filling the
gaps. The classical image inpainting problem can be defined as follows. Let X be the ideal
complete signal, Y the observed incomplete data and M the binary mask (i.e. Mi = 1 if we have
information at pixel i, Mi = 0 otherwise). In short, we have: Y = MX. Inpainting consists in
recovering X knowing Y and M . We thus want to minimize:

min
X

‖ΦTX‖0 subject to Y = MX . (14)

It was shown in [24] that this optimization problem can be efficiently solved through an iterative
thresholding algorithm [24, 25] :

X(n+1) = ∆Φ,λn(X
(n) + Y −MX(n)) . (15)

where the nonlinear operator ∆Φ,λ(Z) consists in i) decomposing the signal Z in the dictionary
Φ to derive the coefficients α = ΦTZ, ii) thresholding the coefficients: α̃ = ρ(α, λ), where
the thresholding operator ρ can either be a hard thresholding or a soft thresholding, and iii)
reconstructing Z̃ from the thresholded coefficients α̃.

The threshold parameter λn decreases with the iteration number and it plays a role similar
to the cooling parameter of the simulated annealing techniques, i.e. it allows the solution to
escape from local minima. More details on optimization in inpainting with sparsity can be found
in [25, 2]. The case where the dictionary is a union of subdictionaries Φ = {Φ1, ...,ΦK} where
each Φi has a fast operator has also been investigated in [24, 25].

Sparse inpainting has been used for different applications in astrophysics:

• high order statistics on weak lensing and Cosmic Microwave Background (CMB) data: for
second order statistics such as power spectrum estimation, robust methods exist and it
is generally not necessary to use more sophisticated methods. For higher order statistics
(bispectrum, etc), dealing with the mask of missing data is a challenging task. It was
shown that sparse inpainting can very well fill the gap, and keep a very high accuracy on
the statistical estimators for both weak lensing [26] and CMB data [27]
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• asteroseismology: Sparse inpainting has been included in the official CoRoT pipeline to
correct the missing data in both asteroseismic and exoplanet channel [28, 29].

• Large scale studies on spherical maps for ISW (integrated Sachs-Wolfe effect) signal
reconstruction [30] and CMB anomalies analysis [31].

7. Blind Source Separation
In the blind source separation (BSS) setting, the instantaneous linear mixture model assumes
that we are given m observations {Y1, · · · , Ym} where each {Yi}i=1,··· ,m is a row-vector of
size t; each measurement is the linear mixture of n source processes. As the measurements
are m different mixtures, source separation techniques aim at recovering the original sources
X = [XT

1 , · · · , XT
n ]

T by taking advantage of some information contained in the way the signals
are mixed in the observed data. The linear mixture model is rewritten in matrix form,

Y = HX +N, (16)

where Y is the m× t measurement matrix (i.e. observed data), X is the n× t source matrix and
H is the m× n mixing matrix. H defines the contribution of each source to each measurement.
An m× t matrix N is added to account for instrumental noise or model imperfections.

It has been shown that sparsity is a very robust regularization to solve BSS for both
underdetermined (i.e. we have less observations than unknown, m < n) [32] and overdetermined
mixtures (m ≥ n) [33, 12]. The GMCA (Generalized Morphological Component Analysis)
algorithm [33] finds the sparsest solution through the following iterative scheme:

X(k+1) = ∆Φ,λk
(H+(k)

Y ) ,

H(k+1) = Y X(k+1)T (X(k+1)X(k+1)T )−1 , (17)

where H+(k)
is the pseudo-inverse of the estimated mixing matrix H(k) at iteration k, λk

is a decreasing threshold and ∆Φ,λk
is the nonlinear operator which consists in decomposing

each source Xi on the dictionary Φ, threshold its coefficients and reconstruct it. Finally, for
hyperspectral data, it was advocated to impose sparsity constraints on the columns of the
mixing matrix to enhance source recovery [12]. GMCA has shown to be very impressive to
remove Galactic and extragalactic foregrounds in order to detect the Epoch of Reionization
21-cm signal [34].

8. Conclusion
Signal processing in the 20th century was mainly considering band limited signals with an
acquisition system based on the Shannon-Nyquist sampling theorem, and inverse problems
were solved using least square estimators. The last ten years have seen emerging a new
paradigm, based on sparse signals and the compressed sensing sampling theorem, where sparse
regularization is used to solve inverse problems. We have presented how sparse representations
can be used in different applications such denoising, deconvolution, inpainting or blind source
separation. More details can be found in [1].
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[30] Dupé F -X, Rassat A, Starck J -L and Fadili M J 2011 Measuring the integrated Sachs-Wolfe effect Astron.
Astrophys. 534 A51

[31] Starck J -L, Fadili M J and Rassat A 2013 Low-` CMB analysis and inpainting Astron. Astrophys. 550 A15

International Meeting on High-Dimensional Data-Driven Science (HD3-2015) IOP Publishing
Journal of Physics: Conference Series 699 (2016) 012010 doi:10.1088/1742-6596/699/1/012010

9



[32] Gribonval R, Rauhut H, Schnass K and Vandergheynst P 2008 Atoms of all channels, unite! Average
case analysis of multi-channel sparse recovery using greedy algorithms Journal of Fourier Analysis and
Applications 14(5) 655–687

[33] Bobin J, Starck J -L, Fadili M J and Moudden Y 2007 Sparsity and morphological diversity in blind source
separation IEEE Transactions on Image Processing 16(11) 2662–2674

[34] Chapman E, Zaroubi S and Abdalla F 2014 Foreground Removal vs. Foreground Avoidance: Contamination
of the EoR Window ArXiv e-prints arXiv:1408.4695

International Meeting on High-Dimensional Data-Driven Science (HD3-2015) IOP Publishing
Journal of Physics: Conference Series 699 (2016) 012010 doi:10.1088/1742-6596/699/1/012010

10


