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Abstract. Signal assignment is a fundamental step for analyses of protein structure and 

dynamics with nuclear magnetic resonance (NMR). Main-chain signal assignment is achieved 

with a sequential assignment method and/or an amino-acid selective stable isotope labeling 

(AASIL) method. Combinatorial selective labeling (CSL) methods, as well as our labeling 

strategy, stable isotope encoding (SiCode), were developed to reduce the required number of 

labeled samples, since one of the drawbacks of AASIL is that many samples are needed. Signal 

overlapping in NMR spectra interferes with amino-acid determination by CSL and SiCode. 

Since spectral deconvolution by peak fitting with a gradient method cannot resolve closely 

overlapped signals, we developed a new method to perform both peak fitting and amino acid 

determination simultaneously, with a replica exchange Monte Carlo method, incorporating 

prior knowledge of stable-isotope labeling ratios and the amino-acid sequence of the protein. 

1.  Introduction 

Nuclear magnetic resonance (NMR) is a widely used method for protein analysis. In NMR spectra, 

each observable atom in the protein gives a signal at its specific frequency, called a chemical shift, 

which is determined by the chemical environment of the atom. Moreover, the characteristics of the 

signals, such as appearances, intensities, and/or line widths, reflect the chemical bonds, distances, 

mobilities, and/or environments of the atoms, depending on the types of measurements. Therefore, by 

combining various NMR measurements, the three-dimensional structures and dynamics of the protein 

can be analyzed. 

The determination of the chemical shifts of the atoms, which is called the signal assignment, is 

usually the first step of the analysis. Sequential assignment with triple resonance measurements is a 

commonly used technique for the assignment of main chain atoms, by searching neighboring amino 

acid residues [1]. Additionally or alternatively, amino-acid selective stable isotope labeling (AASIL) is 

used, especially for challenging targets such as large proteins [2], low-solubility proteins [3] or for 

protein analyses by in-cell NMR [4], because in such cases, the fast decay of NMR signals, the low 
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signal-to-noise ratio and/or the signal overlapping may interfere with triple resonance measurements. 

Naturally abundant 
12

C and 
14

N are unobservable with NMR, while 
13

C and 
15

N are observable stable 

isotopes (SIs). For the simple AASIL method, each protein sample corresponds to one amino acid that 

is selectively 
15

N labeled, while the others retain 
14

N. Using these sets of protein samples, one can 

know the amino acid from which each signal is derived. Furthermore, in the dual selective approach, 

using a combination of two amino acids in which one is selectively 
15

N labeled and the other is 
13

C 

labeled, one can also know the amino acid of the preceding (N-terminal side) residue by a 

measurement using the amide nitrogen and the carbonyl carbon [5, 6]. This information greatly 

narrows down the assignment possibilities, and therefore is useful for main chain assignments. 

However, because the number of standard amino acids is 20, the simple AASIL method requires a 

large number of labeled protein samples, and thus generates arduous sample preparation workloads 

and consumes NMR machine time. 

To reduce the number of labeled samples required in AASIL, various combinatorial selective 

labeling (CSL) methods were proposed [7-18]. In CSL, each amino acid is represented by a 

combination of multiple samples. We developed a new strategy, named “stable isotope encoding” 

(SiCode) [19], to further reduce the number of samples, by regarding AASIL as a “encoding-and-

decoding” process. Specifically, the amino-acid information is encoded into the SI-labeling ratio 

pattern of the samples, and decoded from the signal intensity ratio of the NMR spectra. With this 

strategy, using ternary digits as codewords, 19 amino acids are represented by only 3 labeled samples 

[19]. However, for both CSL and SiCode, occasional signal overlapping may lead to misinterpretation 

of the amino acid information. Although the original SiCode procedure successfully decoded some 

overlapped signals [19], further improvement is needed. 

In this paper, we report an improved decoding procedure for SiCode, which utilizes the prior 

knowledge of the SI labeling pattern and the amino acid sequence of the protein for signal 

deconvolution. Nagata et al. [20] reported that the Bayesian spectral deconvolution and model 

selection problems were simultaneously solved, by finding both the fitting parameters and free energy 

for model selection with the replica exchange Monte Carlo (REMC) method. This method has been 

applied to SiCode, by regarding the decoding process as a model selection problem. 

2.  Theory 

2.1.  The SiCode decoding problem 

In the SiCode strategy, the SI labeling pattern is regarded as a codeword table and thus is predefined, 

as shown in table 1, for example. 𝒄(𝑎) ∈ [0,1]𝑆 and 𝒏(𝑎) ∈ [𝑛min, 1]𝑆 are 𝑆-dimensional vectors that 

represent the
 13

C and 
15

N labeling ratios of amino acid 𝑎, respectively, where 𝑆 is the number of 

labeled samples, and 𝑛min is a minimum 
15

N labeling ratio and is set to be greater than zero to avoid 

loss of information for the 
13

C labeling ratio, as discussed later. For example, in the labeling pattern 

shown in table 1, 𝑛min is 0.5. To estimate the signal amplitude, at least one sample is 100% labeled, 

therefore 

 ∀𝑎, max 𝒏(𝑎) = 1, max 𝒄(𝑎) = 1. (1) 
1
H-

15
N HSQC (hereafter “HSQC”) is a fundamental two-dimensional NMR spectrum. The 

intensities of the HSQC spectrum are assumed to be 

 𝑰HSQC(𝑥, 𝑦) = ∑ 𝐴HSQC
𝑖

𝑖

 𝒏(𝑎𝑖) exp (−
(𝑥 − 𝑥0

𝑖 )
2

2𝜎𝑥
𝑖 2 −

(𝑦 − 𝑦0
𝑖 )

2

2𝜎𝑦
𝑖 2 ) (2) 

where 𝑰HSQC(𝑥, 𝑦) is an 𝑆-dimensional vector that represents the intensities of HSQC, 𝑥 and 𝑦 are the 

chemical shifts of the 
1
H and 

15
N axes, respectively, 𝐴HSQC

𝑖  is the amplitude of the HSQC signal of 

residue 𝑖, 𝑎𝑖 is the amino acid of residue 𝑖, 𝑥0
𝑖  and 𝑦0

𝑖  are the 
1
H and 

15
N chemical shifts of the center 

of the signal of residue 𝑖, respectively, and 𝜎𝑥
𝑖  and 𝜎𝑦

𝑖  are the 
1
H and 

15
N line widths of the signal of 
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residue 𝑖 , respectively. Note that 𝐴HSQC
𝑖  is 0 if 𝑎𝑖  is proline, because of the absence of the amide 

hydrogen. 

The two-dimensional version of HN(CO) (hereafter “HNCO”) is another spectrum used in the 

SiCode strategy. As in HSQC, the two axes of HNCO correspond to the amide hydrogen and nitrogen. 

Therefore, their signals should appear at the same chemical shifts as in HSQC, while their intensities 

are affected by both the 
15

N labeling ratio of the amide nitrogen of residue 𝑖 and 
13

C labeling ratio of 

the carbonyl carbon of residue 𝑖 − 1, as follows: 

 𝑰HNCO(𝑥, 𝑦) = ∑ 𝐴HNCO
𝑖

𝑖

 𝒏(𝑎𝑖) ∘ 𝒄(𝑎𝑖−1) exp (−
(𝑥 − 𝑥0

𝑖 )
2

2𝜎𝑥
𝑖 2 −

(𝑦 − 𝑦0
𝑖 )

2

2𝜎𝑦
𝑖 2 ) (3) 

where 𝑰HNCO(𝑥, 𝑦) is an 𝑆-dimensional vector that represents the intensities of HNCO, 𝐴HNCO
𝑖  is the 

amplitude of the HNCO signal of residue 𝑖, and ∘ denotes element-wise multiplication. As in HSQC, 

𝐴HNCO
𝑖  is 0 if 𝑎𝑖 is proline. Note that if the 

15
N labeling ratio of one of the samples is a very small 

value, then we cannot obtain the 
13

C labeling ratio information for the sample, due to the weak HNCO 

signal. To avoid this situation, each element of the 𝒏(𝑎) value is set to 𝑛min or larger. The decoding 

problem of SiCode is to determine 𝑎𝑖 and 𝑎𝑖−1 for each signal appearing in the spectra. 

 

Table 1. SI labeling patterns used in this study 

amino 

acid 

sample 1 sample 2 sample 3 corresponding 

codeword 13
C 

15
N 

13
C 

15
N 

13
C 

15
N 

G 100% 100% 100% 100% 100% 100% 222 

F 100% 100% 100% 100% 50% 75% 221 

N 100% 100% 100% 100% 0% 50% 220 

L 100% 100% 50% 75% 100% 100% 212 

S 100% 100% 50% 75% 50% 75% 211 

D 100% 100% 50% 75% 0% 50% 210 

M 100% 100% 0% 50% 100% 100% 202 

K 100% 100% 0% 50% 50% 75% 201 

R 100% 100% 0% 50% 0% 50% 200 

A 50% 75% 100% 100% 100% 100% 122 

I 50% 75% 100% 100% 50% 75% 121 

C 50% 75% 100% 100% 0% 50% 120 

V 50% 75% 50% 75% 100% 100% 112 

Y 50% 75% 0% 50% 100% 100% 102 

Q 0% 50% 100% 100% 100% 100% 022 

E 0% 50% 100% 100% 50% 75% 021 

H 0% 50% 100% 100% 0% 50% 020 

T 0% 50% 50% 75% 100% 100% 012 

W 0% 50% 0% 50% 100% 100% 002 

P 0% 0% 0% 0% 0% 0%  

 

2.2.  The original version of the decoding procedure (sequential decoding) 

In the original version of SiCode, the decoding procedure consisted of three sequential steps: peak 

fitting, calculation of SI-labeling ratios, and determination of amino acids. Hereafter, we refer to this 

as “sequential decoding”. Since it is difficult to analyze the full region of the spectra at the same time, 

the spectra are divided into small regions. The least square fitting to the following function is then 

performed for each region: 
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 (
𝑰HSQC(𝑥, 𝑦)

𝑰HNCO(𝑥, 𝑦)
) = ∑ (

𝑩HSQC
𝑘

𝑩HNCO
𝑘

) exp (−
(𝑥 − 𝑥0

𝑘)
2

2𝜎𝑥
𝑘2 −

(𝑦 − 𝑦0
𝑘)

2

2𝜎𝑦
𝑘2 )

𝐾

𝑘=1

 (4) 

where 𝐾 is the total number of signals in the region and is assumed to be given, and 𝑩HSQC
𝑘  and 

𝑩HNCO
𝑘  are the HSQC and HNCO intensities of the 𝑘-th signal, respectively. 𝑩HSQC

𝑘 , 𝑩HNCO
𝑘 , 𝑥0

𝑘, 𝑦0
𝑘, 

𝜎𝑥
𝑘, and 𝜎𝑦

𝑘 are fitting parameters. As described, at least one sample is 100% labeled in the SiCode 

labeling pattern for each amino acid. The amplitude of each signal is then estimated by 

 𝐴̂HSQC
𝑘 = max(𝑩HSQC

𝑘 ) (5) 

where 𝐴̂HSQC
𝑘  is the estimated HSQC amplitude of the 𝑘-th signal, assuming that all signals in the 

region are positive. The 
15

N labeling ratios are estimated by 

 𝒏̂𝑘 = 𝑩HSQC
𝑘 𝐴̂HSQC

𝑘⁄  (6) 

where 𝒏̂𝑘 is are the back-calculated SI-labeling ratios (hereafter named “SI-indices”) of 
15

N. Since 

HNCO intensities are proportional to not only the 
13

C labeling ratios of residue 𝑖 − 1 but also the 
15

N 

labeling ratios of residue 𝑖, they should be adjusted as follows: 

 𝑩′HNCO
𝑘 = 𝑩HNCO

𝑘 ⊘ 𝒏̂𝑘 (7) 

where 𝑩′HNCO
𝑘  is the adjusted HNCO intensitiy of the 𝑘 -th signal, and ⊘  denotes element-wise 

division. The HNCO amplitude and the 
13

C labeling ratios are similarly estimated by 

 𝐴′̂HNCO
𝑘 = max(𝑩′HNCO

𝑘 ) (8) 

 𝒄̂𝑘 = 𝑩′HNCO
𝑘 𝐴′̂HNCO

𝑘⁄  (9) 

where 𝐴̂′HNCO
𝑘  is the estimated adjusted HNCO amplitude of the 𝑘-th signal, and 𝒄̂𝑘  is the 

13
C SI-

indices. SI indices can be converted to amino acids, using the given labeling pattern: 

 𝑎𝑖
𝑘 = argmin

𝑎
𝑑(𝒏̂𝑘 , 𝒏(𝑎)) (10) 

 𝑎𝑖−1
𝑘 = argmin

𝑎
𝑑(𝒄̂𝑘 , 𝒄(𝑎)) (11) 

where 𝑎𝑖
𝑘 is the amino acid of the residue from which the 𝑘-th signal is derived, 𝑎𝑖−1

𝑘  is the amino acid 

of its preceeding (N-terminal side) residue, and 𝑑 denotes the Euclidean distance. Since the codeword 

table shown in table 1 uses three ternary digits as a codeword (0 for 0%, 1 for 50%, 2 for 100% 

labeling of 
13

C; 0 for 50%, 1 for 75%, 2 for 100% labeling of 
15

N) and all of the 19 possible 

codewords are occupied, the simple conversion of the SI indices to the nearest ternary digits (i.e., for 

𝒄̂𝑘, -0.25 to 0.25 is 0, 0.25 to 0.75 is 1, 0.75 to 1.25 is 2; for 𝒏̂𝑘, 0.375 to 0.625 is 0, 0.625 to 0.875 is 1, 

0.875 to 1.125 is 2) provides the same result as equations (10) and (11). As the proline residue is not 

SI-labeled, a small 𝐴′̂HNCO
𝑘  value suggests that 𝑎𝑖−1

𝑘  is a proline. 

This sequential decoding procedure has two problems. Firstly, it is difficult to find the global 

optimum of the peak fitting (equation (4)). We used the Levenberg-Marquardt method with the initial 

parameters determined manually [19]; however, the failure to set appropriate initial parameters leads 

to trapping in a local optimum. Secondly, since we perform the peak fitting (equation (4)) first and 

then interpret the resulting amplitude using the codeword table (equations (5) to (11)), peak fitting 

may fail in cases with close overlapping (as discussed in the Results section). 

2.3.  Improved decoding procedure with REMC 

For a given amino acid set 𝑀 = (𝑎𝑖
𝑘 , 𝑎𝑖−1

𝑘 ;  𝑘 = 1 … 𝐾)  and peak parameter set 

𝛩 = (𝐴HSQC
𝑘 , 𝐴HNCO

𝑘 , 𝑥0
𝑘 , 𝑦0

𝑘 , 𝜎𝑥
𝑘 , 𝜎𝑦

𝑘;  𝑘 = 1 … 𝐾), the residual error of each spectrum is calculated as: 

 𝑹HSQC(𝑥, 𝑦; 𝑀, 𝛩) = 𝑰HSQC(𝑥, 𝑦) − ∑ 𝐴HSQC
𝑘 𝒏(𝑎𝑖

𝑘)exp (−
(𝑥 − 𝑥0

𝑘)
2

2𝜎𝑥
𝑘2 −

(𝑦 − 𝑦0
𝑘)

2

2𝜎𝑦
𝑘2 )

𝐾

𝑘=1

 (12) 
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𝑹HNCO(𝑥, 𝑦; 𝑀, 𝛩)
= 𝑰HNCO(𝑥, 𝑦)

− ∑ 𝐴HNCO
𝑘 𝒏(𝑎𝑖

𝑘) ∘ 𝒄(𝑎𝑖−1
𝑘 )exp (−

(𝑥 − 𝑥0
𝑘)

2

2𝜎𝑥
𝑘2 −

(𝑦 − 𝑦0
𝑘)

2

2𝜎𝑦
𝑘2 )

𝐾

𝑘=1

 

(13) 

where 𝑹HSQC and 𝑹HNCO are the residual errors of HSQC and HNCO, respectively, and 𝐴HSQC
𝑘  and 

𝐴HNCO
𝑘  are the HSQC and HNCO amplitudes of the 𝑘 -th signal, respectively. Assuming that the 

spectral noise is Gaussian distributed and its magnitude in each spectrum of each sample is known, the 

sum of the normalized squared residual error 𝐸(𝑀, 𝛩) is defined as: 

 𝐸(𝑀, 𝛩) =
1

2
∑ (|𝑹HSQC(𝑥, 𝑦; 𝑀, 𝛩) ⊘ 𝝈HSQC|

2
+ |𝑹HNCO(𝑥, 𝑦; 𝑀, 𝛩) ⊘ 𝝈HNCO|2)

𝑥,𝑦

 (14) 

where 𝝈HSQC and 𝝈HNCO are the standard deviations of the HSQC and HNCO noises, respectively. For 

Bayesian spectral deconvolution and model selection, regarding the amino acid set 𝑀 as a model, the 

marginal likelihood, which is the posterior probability of the observed spectra with the given amino 

acid set 𝑀, is calculated as [20]: 

 𝐿(𝑀) = ∫ exp(−𝐸(𝑀, 𝛩)) 𝜑(𝛩)d𝛩 (15) 

where 𝜑(𝛩) is the prior probability density of 𝛩 , which in this report we assume has a uniform 

distribution. Since it is difficult to calculate 𝐿(𝑀) analytically, we numerically calculate this value 

with the REMC method, as described [20]. The amino-acid set 𝑀 should be selected according to the 

value −log 𝐿(𝑀), which is called the free energy [20]. For every Markov chain Monte Carlo (MCMC) 

step, a parameter set 𝛩 is sampled and the corresponding 𝐸(𝑀, 𝛩) is calculated. From these sampling 

results, we can find the best fit parameter 𝛩 with the smallest 𝐸(𝑀, 𝛩) value, the posterior distribution 

of 𝛩  with the low temperature replica, and 𝐿(𝑀) from all replicas, as described [20]. The use of 

REMC avoids trapping in a local optimum. 

If the amino acid sequence of the protein is not known, then the number of possible 𝑀 is large; 

namely, (19 × 20)𝐾, since 𝑎𝑖
𝑘 is one of all 19 non-proline amino acids and 𝑎𝑖−1

𝑘  is one of all 20 amino 

acids. Excluding an impossible combination of amino acids, using the prior knowledge of the amino 

acid sequence, may improve the decoding correctness in challenging cases. To achieve this, 𝑀 should 

comply with 

 ∀𝑝, 𝐶(𝑝, 𝑀) ≤ 𝑇(𝑝) (16) 

where 𝑝 = (𝑎𝑖−1, 𝑎𝑖) is an adjacent pair of amino acids, 𝐶(𝑝, 𝑀) is the number of amino-acid pairs 𝑝 

found in 𝑀, and 𝑇(𝑝) is the number of amino-acid pairs 𝑝 found in the amino-acid sequence of the 

protein, assuming that one residue gives no more than one signal in a spectrum. Hereafter, we call this 

procedure “model-selection decoding”. 

As discussed, we can obtain 𝐿(𝑀) for all possible 𝑀 by running REMC for each 𝑀; however, a 

combinatorial explosion of the number of possible 𝑀 occurs as 𝐾 increases. To find the best fit 𝑀 and 

𝛩 or the posterior distribution of 𝑀 and 𝛩, we can alternatively run REMC once, by sampling both the 

discrete variables 𝑀  and the continuous variables 𝛩  as parameters. In this report, we assume the 

uniform distribution of 𝑀. Each amino acid pair of 𝑀, as well as each parameter of 𝛩, is updated in 

MCMC step. This REMC run gives us the best fit 𝑀 or posterior distribution of 𝑀, which can be used 

as a decoding result for SiCode. Hereafter, we call this procedure “model-optimization decoding”. 

3.  Materials and methods 

3.1.  Protein preparation and NMR measurement 

Three selectively labeled samples of the SH2 domain (residues 291 to 393) of the human BMX protein 

(UniProt: P51813), with an N-terminal 7-residue cloning artifact (GSSGSSG), were prepared 

according to the SI-labeling pattern shown in table 1, using an Escherichia coli based cell-free protein 

synthesis system [21-25] with metabolic inhibitors to suppress SI-labeling scrambles [26], as 
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described [19].  To evaluate the decoding procedures in various signal-to-noise ratios (SNRs), NMR 

spectra were acquired under three conditions: at a 0.35 mM concentration with 8 scans for HSQC and 

32 scans for HNCO (hereafter, high-SNR conditions), at a 0.05 mM concentration with 64 scans for 

HSQC and 256 scans for HNCO (hereafter, medium-SNR conditions), and at a 0.05 mM concentration 

with 16 scans for HSQC and 64 scans for HNCO (hereafter, low-SNR conditions), as described [19]. 

Since it is important for SiCode to compensate for variances in concentrations among samples 

and/or other reasons that affect intensities, the spectra should be normalized using glycine residues 

[19]. In this report, prior to the REMC analyses, the spectra acquired for samples 1, 2, and 3 were 

divided by the values of 0.937, 0.911, and 1.000, respectively, in the high-SNR conditions, and 0.997, 

0.896, and 0.946, respectively, in the medium- and low-SNR conditions. 

3.2.  Model-selection decoding 

All possible amino-acid combinations 𝑀 were generated from the amino-acid sequence of BMX SH2, 

according to equation (16). For each 𝑀, REMC was performed essentially as described [20]. The 

standard deviations of the spectral noise were evaluated using the region without signals shown in 

figure 1, for each spectrum and each sample. The spectral regions used for analysis were manually 

determined, as shown in figure 1. The upper limits of 𝐴HSQC
𝑘  and 𝐴HNCO

𝑘  were set to 1.2-fold of the 

maximum of each spectrum in the region, while their lower limits were set to 3-fold of the average of 

𝝈HSQC and 𝝈HNCO, respectively. The upper and lower limits of 𝑥0
𝑘 and 𝑦0

𝑘 were set to be the ends of 

the spectral region. The upper and lower limits of 𝜎𝑥
𝑘 were 0.1 ppm and 0.001 ppm, respectively. The 

upper and lower limits of 𝜎𝑦
𝑘 were 0.75 ppm and 0.01 ppm, respectively. The number of temperatures 

𝐿 was 96, and the inverse temperature 𝛽𝑙 was 

 𝛽𝑙 = {
0, (if 𝑙 = 1)

𝑟𝑙−𝐿 , (otherwise)
 (17) 

where 𝑟 = 1.15, 𝑙 = 1 … 𝐿. The MCMC steps were set to 5,000 for burn-in and 1,000 for sampling. In 

each MCMC step, the sequential updates of the parameters 𝐴HSQC
1 , 𝐴HNCO

1 , ..., 𝐴HSQC
𝐾 , 𝐴HNCO

𝐾 , 𝑥0
1 , 

𝑦0
1, ..., 𝑥0

𝐾, 𝑦0
𝐾, 𝜎𝑥

1, 𝜎𝑦
1, ..., 𝜎𝑥

𝐾, 𝜎𝑦
𝐾 were performed with the Metropolis algorithm, followed by replica 

exchange between two adjacent temperatures, as described [20]. 

 

 

Figure 1. HSQC spectrum of sample 1 of BMX SH2 protein under the high-SNR conditions. 

Black and red contours represent positive and negative signals, respectively. Regions used 

for estimation of background noise are shown by red boxes. Regions used in this study for 

deconvolution of overlapped signals are shown by blue boxes, which are expanded in the 

right panel. Each peak label consists of 𝑎𝑖−1
𝑘  (in parentheses), 𝑎𝑖

𝑘, and residue number 𝑖. 
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3.3.  Model-optimization decoding 

Simultaneous optimizations of both 𝑀 and 𝛩 were performed essentially as described in the above 

model-selection decoding, except for the following. In each MCMC step, the amino acid combinations 

𝑝1, ..., 𝑝𝐾  were updated in the sequence before the update of 𝛩 , where the amino-acid pair 𝑝𝑘 =

(𝑎𝑖−1
𝑘 , 𝑎𝑖

𝑘). If 𝑀 violated equation (16) as a result of the update, this update was rejected, regardless of 

the change in the residual error. The number of temperatures 𝐿 was 192 and 𝑟 = 1.1. The number of 

MCMC steps were set to be 50,000 or 200,000 for burn-in, in the case of 𝐾 < 6 or 𝐾 ≥ 6, respectively, 

and 10,000 for sampling. 

4.  Results 

4.1.  Sequential decoding 

In this report, we evaluated the decoding procedures with overlapped signals appearing in the spectra. 

As shown in figure 1, region 1 contains two signals, (Y)C83 and (H)N97, with overlapping that makes 

the decoding difficult. However, even the sequential decoding successfully decodes these two signals 

under the high-SNR conditions (figure 2). Decoding the signals in region 2, which contains three 

signals, (E)Q25, (R)Q29, and (Y)H94, is a more difficult problem because two of them are very 

closely overlapped (figure 1). The sequential decoding failed to find the correct answer in the analysis 

of this region under the low-SNR conditions (figure 3). 

As discussed in the Theory section, we first perform the peak fitting in the sequential decoding. 

The resulting amplitude of each signal is then converted to the amino acid information, using the 

predefined SI-labeling pattern. Therefore, a failure in the peak fitting step leads to the 

misinterpretation of the amino acid information. As shown in table 1, the SI-labeling ratio of 
15

N is 

either 50%, 75%, or 100%; however, SI indices of 
15

N that differ from these values were obtained; for 

example, 33.0% and 62.8% in the analysis of region 2 (figure 3). These values clearly indicate the 

failure of the peak fitting, as the signal deconvolution of closely overlapped signals is difficult. 

Moreover, one of the decoding results of three signals in region 2 (figure 3), (Y)I, is an amino acid 

pair that does not appear in the amino-acid sequence of BMX SH2, also indicating failure. Hence, 

using prior knowledge of the SI-labeling pattern and the amino-acid sequence in the peak fitting step 

may prevent such failures. 

 

 

Figure 2. Sequential decoding of region 1 under high-SNR conditions. Observed spectrum 

(“observed”), deconvoluted signals (𝑘 = 1 and 2), and residual error (“residual”) are shown. 

SI indices of 
15

N (𝒏̂𝑘) and 
13

C (𝒄̂𝑘) are shown with blue and red numbers, respectively. Each 

corresponding ternary digit is shown in parentheses immediately following the SI index. 

Decoding results are shown on the right of the spectra. 
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Figure 3. Sequential decoding of region 2 under low-SNR conditions. Spectra are shown as 

in figure 2. 

 

4.2.  Model-selection decoding 

Using prior knowledge of the amino acid sequence is achieved by regarding decoding as a model 

selection problem. All of the possible models 𝑀; i.e., combinations of amino acid pairs, can be listed 

according to equation (16), provided the total signal number 𝐾  is given. The sampling results of 

REMC for each model allow us to calculate the free energy, which shows the probability of each 

model. For each REMC run, the amino acids 𝑎𝑖
𝑘 and 𝑎𝑖−1

𝑘  are given, and as a consequence the SI-

labeling ratios 𝒏(𝑎𝑖
𝑘) and 𝒄(𝑎𝑖−1

𝑘 ) are also given. Therefore, the model-selection decoding uses the SI-

labeling pattern as prior knowledge for the peak fitting. 

We applied this method to analyze region 1, under high-SNR conditions. The number of possible 

models is 90 or 4,021, for 𝐾 = 1 or 𝐾 = 2, respectively. We assumed that 𝐾 is either 1 or 2; therefore, 

4,111 models in total were tested. Numerical calculations of free energies by REMC for all of the 

models revealed that the model (H)N+(Y)C had the smallest free energy (figure 4), and was the 

correct model. 

 

 

Figure 4. Free energies of each model (combination 

of amino acid pair). Signals in region 1 were 

analyzed under high-SNR conditions. The calculated 

free energy of each model is shown with a black 

line. All 4,111 models are shown on the left, while 

10 models with the lowest free energies are 

expanded on the right. 
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4.3.  Model-optimization decoding 

In the previous section, the model 𝑀 is given in each REMC run. In case of BMX SH2, the number of 

possible models is 90, 4,021, or 118,905, for 𝐾 = 1, 2, or 3, respectively. In general, the number of 

possible models increases exponentially with 𝐾. Since model-selection decoding requires REMC runs 

for all of possible models, it is not feasible in case of 𝐾 ≥ 3. Alternatively, the model 𝑀 and fitting 

parameters 𝛩 can both be optimized in a single REMC run, to reduce the computation time. This 

method allows us to obtain the posterior probability distributions of 𝑀 and 𝛩, as well as the best fitting 

parameters 𝑀 and 𝛩. 

We applied this method to decode the signals in region 2 under the low-SNR conditions, for which 

the sequential decoding failed to obtain the correct answer (figure 2). As shown in figure 5, the model-

optimization decoding successfully obtained the correct answer. 

 

 

Figure 5. Model-optimization decoding of region 2 under low-SNR conditions. Observed 

spectrum (“observed”), generated spectra with the best fit parameters 𝑀  and 𝛩  for each 

signal (𝑘 = 1 to 3), and residual error (“residual”) are shown. The amino acid pair of each 

signal is shown on the right, and the corresponding 
15

N and 
13

C SI labeling ratios are shown 

with blue and red numbers, respectively. Each corresponding ternary digit is shown in 

parentheses immediately following the SI labeling ratio. 

 

The frequency of the appearance of 𝑀  at the lowest temperature replica corresponds to the 

estimated posterior probability distribution of 𝑀. By model-optimization decoding of the signals in 

region 1 under the low-SNR conditions, only one model, (H)N+Y(C), was sampled, indicating that the 

posterior probabilities of the other models were too low to be detected. In contrast, by the same 

analysis without the prior knowledge of the amino acid sequence; i.e., without limiting models 𝑀 by 

equation (16), four models, (H)N+(Y)C, (H)N+(Y)F, (H)N+(Y)N, and (H)N+(M)F, were sampled. 

Their sampled frequencies; namely, their estimated posterior probabilities, were 51.0%, 24.9%, 24.1%, 

and 0.02%, respectively. As amino acid pairs (Y)F, (Y)N, and (M)F do not appear in the amino-acid 

sequence, the models with these pairs are eliminated in the analysis with equation (16). These results 

show that the prior knowledge of not only the SI-labeling pattern but also the amino-acid sequence 

certainly facilitates correct decoding. 

For the above analyses, the number of signals 𝐾 is assumed to be given. In the real situation, 𝐾 is 

not known, especially in closely overlapped cases. We analyzed region 3 (figure 1), which contains 6 

signals, under the medium-SNR conditions with 𝐾 = 5, 6, or 7  (figure 6). The amino acids were 

correctly decoded in the 𝐾 = 6 case. However, in the case of 𝐾 = 5, the closely overlapped (A)V56 
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and (H)Q95 were considered to be a single broad signal (I)T (𝑘 = 4), and in the case of 𝐾 = 7, an 

additional very broad signal (𝑘 = 4) appeared, while the other 6 signals revealed the correct answers. 

The appearance of the broad signal is due to the wider range of the line width parameter than its actual 

range in our REMC settings, and thus may be suppressed by narrowing the range. However, in some 

cases, the appearance of a broad signal may help us to become aware that 𝐾 is incorrect. 

 

 

Figure 6. Model-optimization decoding of region 3 under the medium SNR-conditions with 

various given numbers of signals. HSQC spectra of sample 1 of observed spectra 

(“observed”), generated spectra with the best fit parameters 𝑀 and 𝛩 for each signal (𝑘 =
1 to 7), sum of the generated spectra (“merged”), and residual error (“residual”) are shown. 

The amino acid pair of each signal is shown with blue letters.  

 

5.  Discussion 

In this report, we showed that spectral deconvolution with prior knowledge, such as the SI-labeling 

ratios and the amino acid sequence, improves the decoding reliability in the case of signal overlapping, 

which interferes with obtaining amino-acid information in SiCode and other CSLs. The previously 

reported [19] sequential decoding was a kind of heuristics, in which the peak fitting result was 

assumed to be correct in the following steps. Such heuristics worked well in relatively easier cases. 

However, in cases with a low SNR and/or close overlapping, the intensities of each signal may contain 

errors due to inaccurate signal deconvolution. In such cases, using prior knowledge in the early stage 

of analysis improves the result. 

We previously proposed different SI-labeling patterns optimized for various numbers of samples 

and amino acids [19]. Some of them are more complicated than that shown in table 1, and use more 

than three SI-labeling levels. The proposed methods; namely, the model-selection decoding and the 

model-optimization decoding, can also deal with such patterns. Moreover, the NMR spectra of other 

CSLs can be analyzed with the proposed methods, to improve the tolerance to signal overlapping. 

The proposed methods are based on assumptions, such as the correctness of the SI-labeling ratio of 

the prepared protein samples, the same chemical shifts and line widths among spectra and samples, the 

two-dimensional Gaussian line shapes, the Gaussian background noise, the absence of minor 

conformers, and the prior uniform distribution of parameters. Some of these assumptions are actually 

incorrect to some extent, and result in residual errors of peak fitting. Careful modifications of these 

assumptions, according to the real phenomena, may further improve the correctness and reliability of 

the methods. However, as discussed above, even with these assumptions, the proposed methods 

certainly improved the decoding accuracy. 
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As shown in equation (16), the prior knowledge of the amino-acid sequence is used as the upper 

limits of the frequency of amino acid pairs. Using it as the lower limits may further improve the 

decoding, if the number of signals derived from minor conformers is limited. However, to use it as the 

lower limits, the full region of the spectra must be analyzed simultaneously. The computation times in 

this study were 3 min 26 sec for region 1 (𝐾 = 2), 3 min 15 sec for region 2 (𝐾 = 3), and 62 min 12 

sec for region 3 (𝐾 = 6), with a computer equipped with an Intel Core i7 4930K CPU (6 cores, 3.4 

GHz). The computation time depends largely on the number of signals (𝐾), the number of data points 

in the region, and the number of MCMC steps. Although the number of MCMC steps in this study is 

excessive, and thus can be reduced, applying the method to the full region of the spectra (𝐾 > 100) is 

not feasible so far, and therefore further improvement is expected. 

For small proteins, most of signals are not overlapped, and thus they can be analyzed with the 

previous sequential decoding. However, close signal overlapping is often observed in large proteins, 

helical proteins, and/or intrinsically disordered proteins. In addition, a low SNR, caused by low 

solubility, high molecular weight of the protein and/or challenging situations, such as in-cell NMR, 

makes the deconvolution difficult. Failures in the signal deconvolution and the amino acid 

determination lead to mistakes in the assignment, which impedes the NMR analysis of the structures 

and dynamics of the protein. Spectral analyses using prior knowledge with the help of computation 

may promote NMR research of difficult proteins in challenging situations. 
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