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Abstract. In this work we present an effective way of finding the spectral singularities of the
one-dimensional Schrödinger operator with a complex-valued potential defined in the half-axis
[0,∞). The spectral singularities are certain poles in the kernel of the resolvent, which are not
eigenvalues of the operator. In this work, the spectral singularities are calculated from the real
zeros of κ (%) = 0, where κ (%) is an analytic function of the complex variable %, which is obtained
by means of the Spectral Parameter Power Series Method. This representation is convenient
from a numerical point of view since its numerical implementation implies truncating the series
up to a M -th term. Hence, finding the approximate spectral singularities is equivalent to finding
the real roots of a certain polynomial of degree 2M . In addition, we provide explicit formulas
for calculating the eigenvalues of the operator, as well as the eigenfunctions and generalized
eigenfunctions associated to both the continuous spectrum and the spectral singularities.

1. Introduction

Let us consider the differential expression ` (y) := −y′′+q (x) y, in the half-axis x ∈ (0,∞), with
the boundary condition at the origin y (0) = 0, where

q (x) :=

{
V (x) , 0 ≤ x ≤ a,
0, a < x <∞

(1)

is a complex-valued function called the potential function, and V satisfies certain regularity
conditions. By L we denote a differential operator defined by the formula Ly := ` (y), with the
domain DL =

{
y ∈ H2 (0, a) ∪H2 (a,∞) : y (0) = 0, ` (y) ∈ L 2 (0,∞)

}
, where H2 (α, β) is the

Sobolev space [1, Suppl. 2]. Since we are not assuming that ImV (x) ≡ 0 in [0, a], the operator
L is non-self-adjoint in DL. In the work [2] it was addressed a similar differential expression on
the whole real axis by considering a real-valued potential function, which leads to a self-adjoint
operator without spectral singularities.

In the classical theory of the Sturm-Liouville equation, the spectrum of L is analysed on
the basis of certain Volterra integral equations of the second kind representing the solutions of
the equation ` (y) = %2y, being % ∈ C the spectral parameter (see, e.g., [3]). However, in the
present work we analyse the spectrum of L from the properties of the solutions of the equation
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` (y) = %2y, which are given explicitly in the form of power series of the spectral parameter [4],
without using the theory of the integral equations. In addition, we are interested in investigating
the spectral singularities of the operator L. The spectral singularities were first discovered by
Naimark [5], though the term spectral singularity was introduced by Schwartz [6], who defined
the spectral singularities for a non-self-adjoint operator in terms of the spectral family of the
operator. Comprehensive investigation on the spectral singularities for differential operators has
been done by Pavlov [7–9], Lyantse [10], Krein [11] and Langer [12]. The latter investigated the
spectral singularities for abstract operators. Nagy [13–15] gave a general notion of the spectral
singularities for closed linear operators on a Banach space.

In quantum mechanics, the spectral singularities typically appear in non-Hermitian
Hamiltonians having a continuous part of the spectrum [16]. Non-Hermitian Hamiltonians have
raised special interest in the literature as complex extensions of quantum mechanics [17]. It is
well-known that non-Hermitian Hamiltonians operators with potentials that fulfil the property of
PT -symmetry [18] have real spectra, where P and T denote the operations of space reflection
and time reversal, respectively. Such symmetry does not by itself guarantee reality of the
spectrum, but it does imply that the eigenvalues are either real, or appear as complex-conjugate
pairs [19]. Physically, the spectral singularities for some complex potentials have been identified
with some resonance phenomena (see, e.g., [20,21]). Hence, identifying the spectral singularities
may lead to define their precise physical meaning.

The outline of this work is as follows: in Section 2 we construct some solutions of the equation
` (y) = %2y in (0, a) and in (0,∞), by means of the SPPS method. Next, in Section 3 we
investigate the spectrum of L consisting of the point spectrum and the continuous spectrum,
and we identify the spectral singularities. We obtain explicit expressions for calculating the
eigenvalues, the spectral singularities and the generalized eigenfunction associated to them.
Finally, in Section 4 we provide some concluding remarks.

2. Construction of some solutions of equation ` (y) = %2y

Let us introduce the parameter λ ∈ C admitting the polar representation

λ := |λ| eiθ, 0 ≤ θ < 2π, (2)

and let % ∈ C be a complex number such that λ = %2. Thus, % is defined as a branch of λ1/2

according to the expression
% :=

√
|λ|eiθ/2, 0 ≤ θ/2 < π. (3)

Definition (2) specifies a Riemann sheet in the complex λ-plane with a branch cut on the half-
axis [0,∞). Formula (3) implies that the condition Im% ≥ 0 holds in each point of this sheet,
which is called the proper Riemann sheet [22, 23]. Once the condition Im% ≥ 0 is invoked, any
result with Imλ1/2 < 0 will violate the requirement of being in the proper Riemann sheet.

Expression (1) leads us to the differential equations

−y′′ + V (x) y = %2y, 0 < x < a, (4a)

−y′′ = %2y, a < x <∞. (4b)

If y satisfies equations (4) simultaneously and if the matching conditions y (a− 0) = y (a+ 0),
y′ (a− 0) = y′ (a+ 0) hold, then y satisfies the equation ` (y) = %2y in (0,∞). Here we have
used the notation y(a ± 0) = limx→a± y (x) for the one-sided limits. If V were a real-valued
function, then equation (4) would be a stationary Schrödinger equation in the proper units, being
(4a) the equation describing the bound states, and (4b) the equation describing the scattering
states. Thus %2 would represent the real eigen-energies of the bound states and the continuous
energy spectrum of the scattering states, respectively. Should V were a complex-valued potential
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yielding a real spectrum, the physical meaning of %2 would still be that of energy. However, a
complex eigen-energy resulting from a complex potential %2 carries information regarding the
lifetime of a decaying eigen-state in resonant systems (see, e.g., [24,25] and references therein).

2.1. A general solution of ` (y) = %2y in the interval (0, a)

By y1 and y2 we denote two linearly independent solutions of equation (4a) in (0, a), then
y (x) = c1y1 (x) + c2y2 (x) is a general solution of (4a) in (0, a), where c1, c2 are arbitrary
numbers. Let y0 be a non-vanishing particular solution of the equation ` (y) = 0 satisfying the
regularity conditions y20, 1/y

2
0 ∈ C [0, a]. According to [4], the series

y1 (x) = y0 (x)
∞∑
k=0

(−1)k %2kX̃(2k) (x) , y2 (x) = y0 (x)
∞∑
k=0

(−1)k %2kX(2k+1) (x)

are two linearly independent solutions of equation (4a) that converge uniformly in [0, a], where

the formal powers X̃(n) and X(n) are defined by the recursive integration procedure

X̃(n) (x) :=

∫ x

x0

X̃(n−1) (s)
(
y20 (s)

)(−1)n−1

ds, X(n) (x) :=

∫ x

x0

X(n−1) (s)
(
y20 (s)

)(−1)n
ds,

with the seeds X̃(0) ≡ 1 and X(0) ≡ 1, being x0 an arbitrary point in [0, a]. By choosing
x0 = a, the solutions y1 and y2 satisfy the initial conditions y1 (a) = y0 (a), y′1 (a) = y′0 (a), and
y2 (a) = 0, y′2 (a) = 1/y0 (a).

Remark 1. The previous recursive integration procedure yields the estimate
∣∣∣X̃(2k)

∣∣∣ ≤ ck%/ (2k)!,

where c% :=
∣∣%2∣∣ |x− a|2 (max

∣∣y20∣∣) (max
∣∣1/y20∣∣). Hence, there exist a majorant series such that

|y1 (x)| ≤ |y0 (x)|
∞∑
k=0

ck%
(2k)!

, 0 ≤ x ≤ a.

Since the right-hand series converges, then y1 converges uniformly on [0, a]. The uniform
convergence of y2 on [0, a] is proven similarly.

2.2. Solutions of ` (y) = %2y in the half-axis (0,∞) asymptotically equal to exp (±i%x)

The function d1e
i%x + d2e

−i%x satisfies equation (4b) in the interval (a,∞), where d1, d2 are
arbitrary complex numbers. If the particular solution y0 is chosen so that y0 (a) = 1 and
y′0 (a) = i, the matching conditions lead to the piecewise continuous function

y (x) =

{
c1y1 (x) + c2y2 (x) , 0 ≤ x ≤ a,
d1e

i%x + d2e
−i%x, a ≤ x <∞,

(5)

satisfying ` (y) = %2y in (0,∞), where d1 = e−i%a

2i% [c1i (%+ 1) + c2], d2 = ei%a

2i% [c1i (%− 1)− c2].
A solution of the equation ` (ϕ) = %2ϕ in (0,∞) with the asymptotic behaviour ϕ (x, %) ∼ ei%x

as x→∞ is obtained by taking d2 = 0 in expression (5), which implies that c2 = c1i (%− 1). In
this case, the sought solution is given by

ϕ (x, %) := c1

{
y1 (x) + i (%− 1) y2 (x) , 0 ≤ x ≤ a,
ei%(x−a), a ≤ x <∞.

(6)
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On the other hand, a solution of the equation ` (ψ) = %2ψ in (0,∞) with the asymptotic
behaviour ψ (x, %) ∼ e−i%x as x → ∞ is obtained by taking d1 = 0 in (5). This implies that
c2 = −c1i (%+ 1), which in turn leads us to the solution

ψ (x, %) := c1

{
y1 (x)− i (%+ 1) y2 (x) , 0 ≤ x ≤ a,
e−i%(x−a), a ≤ x <∞.

(7)

In expressions (6) and (7) the number c1 plays the role of a free parameter depending on no
boundary condition, so we fix c1 = 1 for simplicity. It follows that the Wronskian W [ϕ,ψ] of
the solutions ϕ and ψ in the whole half-axis x ∈ [0,∞) is

W [ϕ,ψ] (x) :=

∣∣∣∣ ϕ (x, %) ψ (x, %)
ϕ′x (x, %) ψ′x (x, %)

∣∣∣∣ = −2i%.

This implies that ϕ and ψ are linearly independent in the region Im% ≥ 0, % 6= 0.

Remark 2. Let us write % = α + iβ. The solutions ϕ and ψ have the asymptotics ϕ (x, %) =
O
(
e−βx

)
, ψ (x, %) = O

(
eβx
)

as x → ∞. Therefore, in the region Im% > 0 of the complex
%-plane, the solutions satisfy ϕ (x, · ) ∈ L 2 (0,∞), ψ (x, · ) /∈ L 2 (0,∞).

3. The spectrum of the operator L

Let us consider the initial value problem

` (y) = %2y, 0 < x <∞, (8a)

y (0) = 0, y′ (0) = 1. (8b)

If y ∈ DL fulfils this problem, then y also satisfies the equation Ly = λy. Since ϕ and ψ are
linearly independent solutions of (8a) for % 6= 0, then the function

s (x, %) :=
ψ (%)ϕ (x, %)− ϕ (%)ψ (x, %)

2i%
(9)

is a solution of problem (8) in the region Im% ≥ 0, % 6= 0, where ϕ (%) := ϕ (0, %) =
y1 (0) + i (%− 1) y2 (0), and ψ (%) := ψ (0, %) = y1 (0)− i (%+ 1) y2 (0). Moreover, the function

s (x, 0) =

{
ϑ1 (0)ϑ2 (x)− ϑ2 (0)ϑ1 (x) , 0 ≤ x ≤ a,
ϑ1 (0) (x− a)− ϑ2 (0) , a ≤ x <∞

(10)

satisfies problem (8) for % = 0, where ϑ1 and ϑ2 are two linearly independent solutions of
` (y) = 0, which can also be constructed with the SPPS method. On the basis of the solutions
s (x, %) and s (x, 0) we will investigate the spectrum of the operator L.

3.1. The point spectrum of the operator L

Theorem 3. The operator L has no positive eigenvalues, moreover, λ = 0 is not an eigenvalue.

Proof. Let λ ≥ 0 so that % = ±
√
λ lies in the proper Riemann sheet. The asymptotics of s is

s
(
x,
√
λ
)
∼

{
y1(0)−iy2(0)√

λ
sin
√
λ (x− a)− y2 (0) cos

√
λ (x− a) , λ > 0,

ϑ1 (0) (x− a)− ϑ2 (0) , λ = 0,

as x→∞. Hence s
(
x,
√
λ
)
/∈ L 2 (0,∞) for λ ≥ 0.
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Theorem 4. In order for λ to be an eigenvalue of L it is necessary and sufficient that λ = %2,
Im% > 0, ϕ (%) = 0.

Proof. According to Remark 2, ϕ (x, · ) ∈ L 2 (0,∞), ψ (x, · ) /∈ L 2 (0,∞) in the region Im% > 0.
The solution s defined in (9) will satisfy s (x, · ) ∈ L 2 (0,∞) in the same region iff ϕ (%) = 0.

Corollary 5. Let %n be a zero of the equation κ (%) = 0 lying in the region Im% > 0, where κ
is an analytic function of the complex variable % defined by its Taylor series

κ (%) :=
∞∑
k=0

(−1)k X̃(2k) (0) %2k + i (%− 1)
∞∑
k=0

(−1)kX(2k+1) (0) %2k. (11)

Then λn = %2n is an eigenvalue of the operator L.

Proof. The condition ϕ (%) = 0 is equivalent to y1 (0) + i (%− 1) y2 (0) = 0. The result comes of
substituting y1 and y2 by their SPPS representations.

The equation κ (%) = 0 is often referred to as the characteristic equation or dispersion relation
of the operator L.

Corollary 6. Let λn be an eigenvalue of the operator L, then the function

yn (x, λn) := kn
ψ
(
λ
1/2
n

)
2iλ

1/2
n

ϕ
(
x, λ1/2n

)
, x ≥ 0,

is its corresponding eigenfunction, up to a multiplicative constant kn.

Proof. The result comes by putting ϕ (%) = 0 in expression (9).

3.2. The continuous spectrum of the operator L

Theorem 7 ( [26]). The resolvent Rλ of the operator L is defined by the integral operator

Rλf (x) :=

∫ ∞
0

G (x, ξ;λ) f (ξ) dξ, f ∈ L 2 (0,∞) ,

where the kernel is specified by the expression

G
(
x, ξ; %2

)
:=

1

ϕ (%)

{
ϕ (x, %) s (ξ, %) , 0 < ξ < x,

s (x, %)ϕ (ξ, %) , x < ξ <∞.

Every number of the form λ = %2, Im% > 0, ϕ (%) 6= 0, belongs to the resolvent set ρL of L.

Theorem 8. Every number λ ≥ 0 belongs to the continuous spectrum σc of the operator L.

Proof. Let us prove that for λ ≥ 0 the range R (L− λI) of the operator L − λI is dense in
L 2 (0,∞). It means that the orthogonal complement of R (L− λI) consists only on the zero
element. Indeed, the orthogonal complement of the set R (L− λI) is the space of solutions u of
the equation L∗u = λu, where L∗ is the adjoint operator of L, which is defined by the differential
expression `∗u = −u′′+q (x)u and the boundary condition u (0) = 0. But according to Theorem
3, λ ≥ 0 is not an eigenvalue of the operator L∗, which yields the trivial solution.
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Corollary 9. Let λ > 0 belong to the continuous spectrum σc of the operator L. Then the
bounded, piecewise continuous function

s
(
x,
√
λ
)

= k

{
y1 (0) y2 (x)− y2 (0) y1 (x) , 0 ≤ x ≤ a,
1√
λ

[y1 (0)− iy2 (0)] sin
√
λ (x− a)− y2 (0) cos

√
λ (x− a) , a ≤ x <∞,

is its associated generalized eigenfunction. The generalized eigenfunction associated to λ = 0 is
given by the function (10), up to a multiplicative constant k.

Proof. The assertion follows by substituting ϕ and ψ in their SPPS form into s (x, %).

3.3. Spectral singularities

The previous results establish that the complex λ-plane is decomposed as C = ρL ∪σp ∪σc, i.e.,
the operator L has no residual spectrum. The continuous spectrum consists of points λ = %2 ≥ 0
lying in the axis Im% = 0, such that ϕ (%) 6= 0. In turn, the eigenvalues are points λ = %2 lying in
the region Im% > 0, such that ϕ (%) = 0. This condition is equivalent to the equation κ (%) = 0.
A natural question arises regarding the role of the zeros of the equation κ (%) = 0 lying in the
continuous part of the spectrum of L.

Let us define a singular value of the operator L by a zero of the equation ϕ (%) = 0 lying
in the region Im% ≥ 0, % 6= 0. Let %n be a zero of the equation ϕ (%) = 0 lying in the region
Im% ≥ 0, % 6= 0. The non-real singular values indeed correspond to the eigenvalues of L, while
the real singular values are the spectral singularities of the operator L. In other words, the
point λ0 is a spectral singularity of the operator L if it is not an eigenvalue of L, and for each
λ in the resolvent set ρL the kernel G (x, ξ;λ) of the resolvent operator (L− λI)−1 satisfies
G (x, ξ;λ)→∞ as λ→ λ0 (see, e.g., [27]). The set of the spectral singularities can be identified
in the complex λ-plane according to the following result.

Theorem 10. Let αn ∈ R be a zero of the equation κ (α) = 0, where κ is an analytic function
defined in (11). Then λn = α2

n is a spectral singularity of the operator L.

Corollary 11. Let αn 6= 0 be a spectral singularity of the operator L, then its corresponding
generalized eigenfunction un is a bounded function given by the formula

un (x, αn) := cn
ψ (αn)

2iαn
ϕ (x, αn) , x ≥ 0,

up to a multiplicative constant cn. If αn = 0 is a spectral singularity, its corresponding
eigenfunction is an unbounded function given by expression (10).

Proof. The result comes of applying the condition ϕ (α) = 0 in expression (9).

Theorem 12. If the potential V is a real-valued function, then the operator L has no spectral
singularities.

Proof. In that case the operator L is self-adjoint in the domain DL. It is well known that the
spectrum of a self-adjoint operator is real, and its residual spectrum is empty [28, p. 182].
Furthermore, all its singular values (eigenvalues) are negative (see, e.g., [1, §2.5], cf. [29, §20])
and none of them lie in the continuous part of the spectrum located on λ ≥ 0.
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4. Concluding remarks

Throughout this work we have investigated the spectrum of the operator L by means of the
properties of the solutions of the equation ` (y) = %2y in (0,∞), on the assumption that the
potential has compact support on [0, a]. In the classical theory of the Sturm-Liouville equation
the solutions of the equation ` (y) = %2y in (0,∞) are represented in the form of Volterra integral
equations of the second kind [5, 10,30–33]. Certain constraints derived from V ∈ L 1 (0,∞) are
imposed to the potential V in order for the solutions of the integral equations to exist and to be
analytic in the domain Im% ≥ 0 and |%| ≥ δ > 0. If the particular solution y0 were constructed
by means of the SPPS method itself, the only condition imposed to the potential would be
V ∈ C [0, a]. Hence, the present analysis allows the applicability of the theory here presented to
a larger class of complex potentials.

Though the theory of the Sturm-Liouville equation ` (y) = %2y is well-known, in the present
work we obtained explicit formulas for calculating the eigenvalues, the spectral singularities, and
the associated eigenfunctions. Such formulas are given in a SPPS form. From a numerical point
of view, the series can be truncated up to a M -th term. In this way, the eigenvalues λn = %2n,
Im%n > 0, of the operator L can be calculated approximately from the polynomial roots of the
equation κM (%) = 0, where κM is the polynomial of order 2M defined by

κM (%) :=

M∑
k=0

(−1)k X̃(2k) (0) %2k + i (%− 1)

M∑
k=0

(−1)kX(2k+1) (0) %2k.

Similarly, the spectral singularities λn = α2
n ≥ 0 can be calculated approximately from the

polynomial roots of the equation κM (α) = 0. The number of approximate eigenvalues (spectral
singularities) that can be calculated from the roots of the equation κM (%) = 0 (κM (α) = 0)
is, in general, lower than M . The remaining spurious roots are due to the truncation of the
series κ (%) (κ (α)). One would expect that the number of approximate eigenvalues would
increase by increasing the number M . However, the upper roots of κM (%) = 0 (κM (α) = 0)
are numerically more unstable than the lower roots due to small errors in the calculation of
the polynomial coefficients. Nonetheless, it is always possible to calculate increasingly higher
approximate eigenvalues (spectral singularities) for a fixed M by means of the shifting of the
spectral parameter, as is described in [4]. The results presented here show the advantages of the
present analysis and the necessity of its further study and numerical deployment, which will be
included in a subsequent paper.

References
[1] Berezin F A and Shubin M A 1991 The Schrödinger Equation (Dordretch: Kluwer Academic Publ.)
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