
Isospectral Trigonometric Pöschl-Teller Potentials
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Abstract. In this work a position dependent mass Hamiltonian with the same spectrum of the
trigonometric Pöschl-Teller one was constructed by means of the underlying potential algebra.
The corresponding wave functions are determined by using the factorization method. A new
family of isospectral potentials are constructed by applying a Darboux transformation. An
example is presented in order to illustrate the formalism.

1. Introduction

In recent years the study of systems with position-dependent mass (PDM) has gain much interest
form both, theoretical and experimental points of views, due to its multiple applications in
different areas of physics and engineering [1–8]. The very concept of a PDM system is far
from being exhaustively discussed. To this respect, many contributions to the fundamental
understanding of the problem have been carried out from different points of view [9–13]. The
factorization method [14–16] has been considered also in this context. Its application in the
generation of exactly solvable potentials in the classical as well as in the quantum mechanical
regimes has been discussed, e. g., in [17–24]. The aim of this work is the construction of position
dependent mass Hamiltonians, having the same spectrum of the trigonometric Pöschl-Teller
(TPT) potential, by means of the potential algebra of the constant mass case. In section 2 the
solution of the constant mass TPT potential by means of the factorization method is presented.
In section 3 it is used the constant mass potential algebra to construct position-dependent mass
potentials with the TPT spectrum, and the corresponding wave functions are determined. In
section 4 these Hamiltonians are used to generate a new family of PDM potentials isospectral
to the TPT one by applying a Darboux transformation. Finally, some concluding remarks are
presented.

2. The constant mass trigonometric Pöschl-Teller potential revisited

In proper units, the constant mass TPT potential Hamiltonian is

H` =
p2

2
+
` (`− 1)

2 cos2 x
, (1)
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where

p = −i d
dx

stands for the momentum operator and ` is an integer number such that ` > 1. This Hamiltonian
can be factorized in the form [25]

H` = a+` a
−
` + ε` = a−`−1a

+
`−1 + ε`−1 (2)

with

a±` =
1√
2

(∓ip+ ` tanx) , ε` =
1

2
`2. (3)

The factorizations (2) lead to the following intertwining relations

a−` H` = H`+1a
−
` , a+`−1H` = H`−1a

+
`−1, (4)

meaning that the operators a±` allow to construct the wave functions of H`−1 and H`+1 in terms
of those of H`. Indeed if H`ψ

n
` = En

` ψ
n
` , then a+`−1ψ

n
` is the eigenfunction of H` with eigenvalue

En+1
`−1 = En

` and a−` ψ
n
` is the eigenfunction of H` with eigenvalue En−1

`+1 = En
` . Thus

ψn+1
`−1 ∝ a

+
`−1ψ

n
` , ψn−1

`+1 ∝ a
−
` ψ

n
` . (5)

The ground state ψ0
` may be constructed as a square integrable function which is annihilated

by a−` , i.e.,

a−` ψ
0
` = 0. (6)

In this way, the normalized ground state wave function is

ψ0
` (x) =

√
`!

π1/2Γ(`+ 1
2)

(cosx)`, (7)

and corresponds to the eigenvalue E0
` = ε` = 1

2`
2. The state ψn

` can be obtained by subsequent

applications of the corresponding operators a+` , indeed

ψn
` (x) = Nn

` a
+
` a

+
`+1 · · · a

+
`+n−1ψ

0
`+n, (8)

with Nn
` a normalization coefficient. Since the operators a±` can be expressed in the form

a±` = ∓ 1√
2

(cosx)∓` d

dx
(cosx)±`, (9)

the equation (8) leads to

ψn
` (x) =

√
22`−1(`+ n)n! (Γ(`))2

πΓ(2`+ n)
(cosx)`C(`)

n (sinx), (10)

where C
(`)
n (z) are the Gegenbauer polynomials. The corresponding spectrum, defined by the

intertwining relations (4), is given by

Sp(H`) =

{
En

` = E0
`+n =

1

2
(`+ n)2 , ` = 2, 3, . . . , n = 0, 1, . . .

}
.
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3. Trigonometric Pöschl-Teller potentials with position-dependent mass

In order to construct TPT potentials with PDM let us consider the Hamiltonian

H` =
1

2
mapm2bpma + V`, 2a+ 2b = −1, (11)

where m(x) is a given function and the potential V`(x) will be determined in such a way that
H` has the same spectrum as the constant mass TPT potential. To this end, let us assume that
H` admit the following factorizations (compare to (2))

H` = A+
` A

−
` + ε` = A−

`−1A
+
`−1 + ε`−1, (12)

in terms of two first order operators of the form

A+
` =

1√
2

(
−imapmb +W`

)
, A−

` =
1√
2

(
imbpma +W`

)
, (13)

with W` a function of the position to be determined and ε` = 1
2`

2. These factorizations imply
the following set of equations from which W` and V` may be constructed

−DW` + 4

(
a+

1

4

)
(D ln J)W` +W 2

` = 2 (V` − ε`) (14)

DW`−1 + 4

(
a+

1

4

)
(D ln J)W`−1 +W 2

`−1 + 4

(
a+

1

4

)(
D2 ln J

)
= 2 (V` − ε`−1) , (15)

with

J(x) =
√
m(x), D =

1

J

d

dx
.

A first solution to the system (14)-(15) can be set in the form

W` = ` tan

∫ x

x0

J(r)dr − 2

(
a+

1

4

)
(D ln J) (16)

V` =
1

2
` (`− 1) sec2

∫ x

x0

J(r)dr − 2

(
a+

1

4

)2

(D ln J)2 +

(
a+

1

4

)(
D2 ln J

)
, (17)

with x0 an integration constant with length units. As in the constant mass case, the factorization
(12) imply the following intertwining relations

A−
` H` = H`+1A

−
` , A+

`−1H` = H`−1A
+
`−1, (18)

meaning that one can determine the eigenfunctions of H`+1 and H`−1 in terms of those of H`,
and that Sp(H`) = Sp(H`). In fact, if Ψn

` (x) denote the eigenfunctions of H`, i.e.,

H`Ψ
n
` (x) = En

` Ψn
` (x), (19)

then, the action of the operators A±
` on Ψn

` is given by

A−
` Ψn

` =
1√
2

√
n (2`+ n)Ψn−1

`+1 , A+
`−1Ψ

n
` =

1√
2

√
(n+ 1) (2`+ n− 1)Ψn+1

`−1 . (20)

Accordingly, the general wave function of H` can be written in the form

Ψn
` (x) =

√
2nΓ(2`+ n)

n!Γ(2(`+ n))
A+

` A
+
`+1 · · ·A

+
`+n−1Ψ

0
`+n, (21)
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where the state Ψ0
` is the ground state of the Hamiltonian H` given by

A−
` Ψ0

` = 0. (22)

Now consider the following change of variable

y(x) =

∫ x

x0

J(r)dr. (23)

It is not difficult to show that [21]

A±
` J

1/2 = J1/2ã±` (24)

with

ã±` =
1√
2

(
±D + ` tan

∫ x

x0

Jdr

)
=

1√
2

(
∓ d

dy
+ ` tan y

)
. (25)

Note that the operators ã±` correspond to the factor operators of the constant mass TPT
Hamiltonian in the y−configuration space. Expressing the ground state Ψ0

` in the form

Ψ0
` (x) = J1/2(x)ψ0

` (y(x)) (26)

then
A−

` Ψ0
` = A−

` J
1/2ψ0

` = J1/2ã−` ψ
0
` = 0.

It is clear, thus, that ψ0
` (y) is nothing but the ground state of the constant mass TPT potential

evaluated in the variable y(x) defined by the choice of the mass function. Hence

Ψ0
` (x) =

√
`!

π1/2Γ(`+ 1/2)
J1/2(x)

(
cos

∫ x

x0

J(r)dr

)`

. (27)

Now the expression (21), together with (26) and (24) allows the construction of the wave
functions Ψn

` as

Ψn
` (x) = J1/2ψn

` (y(x)), (28)

where ψn
` (y) is given by

ψn
` (y) =

√
2nΓ(2`+ n)

n!Γ(2(`+ n))
ã+` ã

+
`+1 · · · ã

+
`+n−1ψ

0
`+n(y), (29)

from which it is clear that ψn
` are the constant mass TPT potential wave functions evaluated in

the variable y. Finally, we can immediately write the normalized wave functions for the TPT
potential with position-dependent mass as

Ψn
` (x) =

√
22`−1(`+ n)n!

πΓ(2`+ 2)
Γ(`)J1/2(x)

(
cos

∫ x

x0

J(r)dr

)`

C(`)
n

(
sin

∫ x

x0

J(r)dr

)
. (30)

This expression is consistent with the point canonical transformation discussed, e.g., in [11].
In order to illustrate our results, we consider the mass [23]

m(x) =
1− β(λx)2

1− (λx)2
, (31)

with β < 0 a dimensionless parameter and λ a constant with length units. This mass has been
used in molecular dynamics to determine the inversion potential of the NH3 molecule by means
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of the density functional theory approach (see [4]). Observe that this function has singularities
at the points x = ±1/λ, meaning that the choice of λ will be determinant in fixing the domain
of V`. Note also that in the limit as λ→ 0 we recover the constant mass case with a unit mass
m = 1. The expression (31) leads to

y(x) =

∫ x

0

√
1− β(λr)2

1− (λr)2
dr =

1

λ
Eint

(
arcsinλx, β1/2

)
, (32)

with Eint(φ, k) the incomplete elliptic integral of second kind [23,26]. The substitution of (31)-
(32) in (17) and (30) leads us to the explicit expressions for the PDM TPT potential and its
corresponding wave functions. In Figure 1 we show the potential and some wave functions for
particular values of the parameters `, a and β.

Figure 1. Left: Position-dependent mass TPT potentials V`(x) for the mass (31). In this plot ` = 2, λ = 0.7,
β = −0.3 and a = −2 (black), a = −1 (blue) and a = 1 (red). Right: Position-dependent mass TPT potential
and its first three wave functions for ` = 2, λ = 0.7, β = −0.3 and a = − 1

4
.

4. New position-dependent mass Hamiltonians with the TPT potential spectrum

It is well known that, in the constant mass case, the operators a±` factorizing the TPT
Hamiltonian (1) are not unique [14]. The same is true for the PDM Hamiltonian (11). Let
us assume that

H` = B−
`−1B

+
`−1 + ε`−1, (33)

with

B+
` =

1√
2

(
−imapmb + U`

)
, B−

` =
1√
2

(
imbpma + U`

)
. (34)

The function U`(x) must then fulfill the Riccati equation (15) that may be rewritten as

DU` + 4

(
a+

1

4

)
(D ln J)U` + U2

` + 4

(
a+

1

4

)(
D2 ln J

)
= 2 (V`+1 − ε`)

where V`+1 is given by (17). In order to construct the solution let us propose, as usual [14, 27],

U`(x) = W`(x) + v(x),

where v(x), in turn, must hold

Dv(x) + 2`v(x)

∫ x

x0

J(r)dr + v2(x) = 0,

leading to

v(x) = D ln

(∫ y(x)

x0

(cos s)2` ds+ γ

)
,
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Figure 2. Left: Position-dependent mass supersymmetric TPT potentials Ṽ`(x, γ) for the mass (31) with ` = 2,
λ = 0.7, β = −0.3, a = − 1

4
and γ = 0.62 (black), γ = 0.9 (blue), γ = 1.2 (red). Right: Position-dependent mass

supersymmetric TPT potential and its first three wave functions for ` = 2, λ = 0.7, β = −0.3 and a = − 1
4

and
γ = 0.7.

with γ an integration constant with the constrain

|γ| > max

∫ y(x)

x0

(
cos

∫ r

x0

J(s)ds

)2`

J(r)dr

in order to avoid singularities.
The function U` can be readily written

U`(x) = ` tan

∫ x

x0

J(r)dr +D ln

[∫ y(x)

x0

(
cos

∫ r

x0

J(s)ds

)2`

J(r)dr + γ

]
− 2

(
a+

1

4

)
D ln J(x),

(35)
Following [14, 22], we may construct a new family of PDM Hamiltonians with the spectrum

of the TPT one by means of a supersymmetric transformation

H̃`(γ) = B+
` B

−
` + ε` =

1

2
mapm2bpma + Ṽ`(x, γ) (36)

where

Ṽ`(x, γ) = V`(x)−D2 ln

[∫ y(x)

x0

(
cos

∫ r

x0

J(s)ds

)2`

J(r)dr + γ

]
. (37)

The set of operators
{
B±

` , H`, H̃`

}
fulfill the intertwining relations

B−
` H̃` = H`+1B

−
` , B+

` H`+1 = H̃`B
+
` , (38)

which means that it is possible to construct the wave functions of H̃` in terms of those of H`.
Indeed, if H̃`Θ

n
` = En

` Θn
` , the wave functions Θn

` are related to the eigenfunctions of H` by

Θn
` ∝ B+

` Ψn−1
` , n = 1, 2, . . . . (39)

It may happen that the set {Θn
` , n = 1, 2, . . .} do not span the whole space of states of H̃`. In

that case there is an isolated eigenstate Θ0
` (x), orthogonal to all Θn

` n = 1, 2, . . ., non connected
to the set {ψn

` , n = 0, 1, . . .}, given by

B−
` Θ0

` = 0, (40)

and corresponding to the eigenvalue E0
` = ε`. Figure 2 shows some members of the family of

potentials Ṽ`(x, γ) (Left) and the first wave functions Θn
` for γ = 0.7 (Right), using the mass

(31) for some values of the parameters `, a and β.
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Concluding remarks

A PDM Hamiltonian having the spectrum of the constant mass TPT one was constructed by
means of the factorization method. It was shown that there exist intertwining relations between
the constant mass and the PDM factor operators. This fact allows to construct the corresponding
PDM wave functions in terms of that of its constant mass counterpart. The method is consistent
with the well known point canonical transformation approach. New isospectral Hamiltonians
were generated by applying a Darboux transformation and their corresponding eigenfunctions
were determined. This method can be generalized to constant mass Hamiltonians with different
underlying algebraic structure. Results on the matter are in progress.
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