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Abstract. The metal-insulator phase transition that arises in the Integer Quantum Hall Effect
has been characterized through the multifractal nature of extended states near the center of
the Lowest Landau Level. In this work, we obtain numerical solutions for the one-electron
Hamiltonian with disorder, where the correlation dimension of extended states in the first
two Landau Levels is obtained, by taking into account the Rashba spin-orbit coupling in the
Hamiltonian. Although, spin-orbit coupling at moderate field intensities has been determined
experimentally, there is no theoretical evidence for the nature of the transition in this case. The
correlation dimension of extended states for the resolved spin levels is obtained, and within the
statistical error, it is found that the Rashba Hamiltonian in presence of disorder, belongs to the
same universality class of spin unresolved systems.

1. Introduction

After the experimental confirmation of the Integer Quantum Hall Effect (IQHE) by Klaus Von
Klitzing [1], the main concern was to find a localization theory for two dimensional electron
systems (2DES) in presence of disorder. The general idea was that the origin of localized states,
responsible for the plateau regions in the Hall resistance p.,, was due to the presence of fixed
impurities in the semiconductors used to host the 2DES. Unfortunately, when impurities are
included in the physical model, an exact analytic solution becomes extremely difficult. With
numerical simulations it is possible to find a solution to the one-electron Hamiltonian with
disorder and understand the electronic transport in the 2DES, as a phase transition between
localized and extended states. The obtained results from the numerical models proved to be
successful, since they were able to predict localization, and find the critical exponents [2, 3] of
the localization-delocalization (LD) transition, which were experimentally confirmed in the late
80’s [4], and early 90’s [5,6], from temperature and sample size scaling experiments.

There is a major interest to study 2DES with zero field spin splitting, where it is possible
to control the spin-orbit coupling (SOC) parameter by tuning the gate voltage. The source
of the splitting energy can be attributed to the coupling between the electron’s spin magnetic
moment with a magnetic field induced by the interfacial electric field. The splitting energies,
corresponding to the Rashba SOC, have been observed in several experiments [7—10], by studying
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the beating patterns in the Shubnikov de Hass (SdH) oscillations at relatively small magnetic
fields. The SOC inside hererostructures, can be tuned by applying different gate voltages;
which is very appealing for spintronic applications [11,12]. From the theoretical point of view,
the dependence of the critical exponents in the LD transition and multifractal spectra on the
coupling parameter, has not been addressed. In this work, we study the nature of the phase
transition on 2DES with Rashba SOC, in presence of disorder. We found extended and localized
states within each spin resolved level for different SOC strengths. Even though, the Rashba SOC
term in the Hamiltonian, couples adjacent Landau levels; we are able to obtain for different SOC
parameters, the correlation dimension of extended states near the center of each spin split level.
We apply multifractal analysis to the extended states [13-18], in order to determine the critical
behavior of states near the center of each resolved level; and found that, for different SOC
strengths, the correlation dimension does not change whithin the statistical error. This work is
organized as follows: in section 2 we offer a brief description of the Rashba SOC term and the
one-electron Hamiltonian in presence of disorder. In section 3, we introduce the numerical model
for disorder and the resulting matrix elements of the Hamiltonian when we take into account
the SOC term, in section 4 we present the results obtained from the numerical simulations for
several SOC strengths and finally; in section 5, the conclusions are presented.

2. Problem statement

In 2DES formed in inversion layers, when a uniform magnetic field is applied in a direction
perpendicular to the interface, the kinetic energy of the electrons is fixed into a series of Landau
levels. The two dimensionality and freezing of the kinetic energy due to the magnetic field,
play a fundamental role in the electronic transport properties of the system when disorder and
electron interactions, are brought into the picture. In the Landau gauge where A= (0,xB), the
two dimensional Schrédinger equation for the one-electron Hamiltonian, in absence of disorder,
can easily be solved. The magnetic field gives rise to Landau levels E,, = (n + %)hwc, fixing
the kinetic energy at these values, and giving rise to highly degenerate levels with Ny, = A/ 27l?
states, where A is the system size of area A = L, L,, w. = eB/m is the cyclotron frequency and
I = y/h/eB is the magnetic length or cyclotron radius.

The Hamiltonian must take into account the interactions between electrons and the impurities
within the heterostructure. When disorder is brought into the picture, the problem becomes
more complex because many body interactions, between the electron and impurities, must be
taken into account. Early numerical models were focused on the microscopic characteristics
of disorder; for example, scattering from neutral impurities can be considered with short range
interactions [19] in which the cyclotron radius is larger than the range of these potentials. A more
general model for disorder was introduced by Huckestein and Kramer [20] where the potential
is assumed to have a normal probability distribution:

__1_ 2, )12
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where V| represents the disorder strength. On highly doped heterostructures, where the mean
free path is small enough, the electron-electron interactions can be neglected or treated as a
perturbation of the disorder. In this situation, the physical behavior of the system can be
described by the one particle Hamiltonian:
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where the first term, is the kinetic energy of the electron that is being fixed by the applied

magnetic field, and the second term represents the disorder potential with the probability
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distribution given by equation (1). The effect of disorder is to break the degeneracy of each
Landau level, which is observed as a broadening in the density of states (DOS). Equation (2)
has been solved numericaly for magnetic fields where hw. > Vg, which is the lowest Landau
level (LLL) approximation. By averaging the results over different realizations of disorder, it is
possible to explain the phase transition that takes place between adjacent plateaus in the Hall
resistance, through a multifractal analysis of the extended states near the center of the LLL.
In this work, we also consider a SOC term in the Hamiltonian. A surface electron will see in
it’s rest frame, an effective magnetic field, due to it’s relative motion to the electric field at the
interface of the inversion layer. On a free 2DES, the interaction energy between the spin of the
electron and it’s orbital motion expressed in terms of the Pauli matrices; known as the Rashba
Hamiltonian, is given by [21]:
Hrp=a(pxd)-z (3)

where « is linearly proportional to the electric field and provides the spin-coupling parameter
which can be tuned through the gate voltage. From the experimental point of view, the zero
field splitting energy is determined through extrapolations of the low field behavior of the SAH
oscillations. Therefore, one way to study the SOC, is to solve the Rashba Hamiltonian when a
external magnetic field is being applied. In this situation, the electron’s spin will interact with
the external magnetic field as well, giving rise to a Zeeman Hamiltonian which is proportional to
the field’s intensity. Experiments where the SOC term is dominant, are performed on magnetic
field intensities in which the Zeeman splitting can be neglected. In the presence of an external
magnetic field, the kinetic momentum changes to = 4+ qA and the Hamiltonian transforms
to:

1 - .
H= T+ a(fi x &) -2+ guBBaz (4)

where pp is the Bohr’s magneton up = |e|/2m. Due to the external magnetic field, we can
use creation and annihilation operators to find the solution to equation (4) in the Landau
representation [21]:

A 1
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By considering the SOC of the Rashba type in equation (2), we obtain the one-electron
Hamiltonian:

1 - _
H= 2—H2+a(ﬂ x &) -2+ V(F) (6)
m

which for moderate magnetic field intensities, the Zeeman term is much smaller than the SOC
term, g < a?mh.

3. Numerical model

In our simulations we use a Gaussian White Noise Potential (GWNP) as the source of disorder,
by working equation (1) in momentum space:
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where Vy = s. In this case, the potential V(7) can be calculated as the Fourier transform of

v(q): ,
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The key to find the solutions of equation (2), is to use the states in absence of disorder as a
basis to obtain the matrix elements of V(7). This is possible by using a linear combination of the
Landau states, in order to build a basis with toroidal boundary conditions (periodic functions
in x and y):

1 0 1Tm,sY —ii‘2 ‘/Z»
ntent)= [z 3 () ©)

where z,, s = 2m7rlQ/Ly + 5Ly, T = x — Tys and a system of units where hiw,. = 1 is being
used. The functions x,(z/l) = H,(z/l)/v2"n!), where H,,(z/l) are the Hermite polynomials
of degree n. With this basis, and generating uncorrelated complex random variables v(q), the
matrix elements of disorder can be obtained. In the LLL approximation, where Vy < hw,, each
level can be studied independently. In any LL, the resulting matrix elements of the term 77,
appearing in equation (8), are given by:

T ]. 1-272 1 2
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. 2 . .
with ¢, = 2’221 (@ = “7%), where n, (ny) are integer numbers, and the functions L, are

the Laguerre polynomials of order n. Using the Rashba Hamiltonian in terms of creation and
annihilation operators, the matrix elements of the SOC term in the Landau basis, are given by

1
(m,n,c|Hg|m',n' o' = ——&6m’m/(W(abﬂa’)én’n/,l +vVn + 1(0|a+|0'>5n7n/+1) (11)

V2

The symbol o represents the index for a state with spin up (4) or spin down (—) orientation and
the operators o™ (0~) are the creation and annihilation operators in terms of the Pauli matrices
o, and oy. In the system of units where fiw. = 1, the SOC parameter a can expressed in terms
of a dimensionless parameter & = a/w.l. Even though, we are using the LLL approximation, it
is evident from equation (11) that the Rashba Hamiltonian is coupling adjacent LL’s. Finally,
the matrix elements of the one-electron Hamiltonian given by equation (6), can be obtained by
applying equations (10) and (11) to the LLL (n = 0) and the next LL (n = 1).

D(2) = 1.67+0.035
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Figure 1. a) Probability density, |1|*> (10™%), for an extended state in a system of I = 100l, and b) disorder
averaged D(2) for states with the smallest IPN in a system of L = 50!, which is consistent with that of [14] within
the statistical error.

4. Results and discussion

In the first part of this section, we will describe the results obtained by solving the Hamiltonian
in equation (2). In the LLL approximation, we only consider the matrix elements of disorder
in the LLL, by substituting n = 0 in equation (10). The system is solved by diagonalization of
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the resulting matrix for Ny states over a square system of size L = L, = L,. All lengths and
energies are expressed as multiples of [ and hw,., respectively. In Figure 1, we show the most
extended state; that is, the state with the smallest inverse participation number (IPN) [22],
which is close to the center of the LLL. We apply the multifractal analysis of Mandelbrot [23]
to obtain the correlation dimension D(2) of extended states by studying the scale invariance for
the second moment of the box probability ug, defined as

P =% i (Ly) ~ AP (12)
k

where A = L;,/L and D(2) is the corresponding scaling exponent. For localized states, D(2) = 0,
since all the probability density falls within one box; however, extended states exhibit a fractal
behavior, where the scaling exponent has been calculated for several models of disorder. Aoki
and Ando [13] found a value of D(2) = 1.57+0.03 using delta scatterers, Huckestein [14] obtained
a value of D(2) = 1.62 £ 0.02 by studying the scaling of equation (12) in a lattice Hamiltonian.
In Figure 1, we also show the scaling exponent found by using the GWNP introduced in section
3, for a system of L = 50! over 205 realizations of the random potential.
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Figure 2. a) Spin resolved DOS for the LLL and first LL with & = 1.0 and b) spin resolved DOS for & = 0.75
for a system of 35/. The energies shown are obtained numerically and can be verified from equation (5).

In this part of the results, we will discuss the multifractal nature of extended states for
spin resolved LLs. We solve the system by diagonalizing the Hamiltonian of equation (6) with
the matrix elements obtained in section 3 for different values of a. In Figure 2, is shown the
disorder averaged DOS for the lowest and first LLs, taken from 200 different realizations of the
random potential on a system of L = 35/. Since the Rashba Hamiltonian is coupling adjacent
levels, and considering two spin orientations for each level according to equation (11), we need
to diagonalize a 4Ny x 4Ny matrix. The center of each spin resolved level corresponds to the
values predicted by equation (5), which are also shown in Figure 2 in our system of units.
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Figure 3. Average D(2) for extended states with the smallest IPN, closest to the center of the LLL and spin
down oriented levels for a) & = 1.0 and b) a = 0.75.
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From the numerical solutions, we can study the dependence of the correlation dimension D(2)
on the SOC parameter for different spin oriented levels. In Figure 3, we show the value of D(2)
for extended states with the smallest IPN. The numerical value was obtained by averaging the
scaling exponent D(2), over 125 realizations of the random potential on a system of 35/. As can
be observed from Figure 3, within the statistical error, the correlation dimension is practically
the same as the value shown in Figure 1 for the spin degenerate case.

5. Conclusions

In this work, it has been shown that extended states are also present near the center of each
spin resolved Landau level. By including the Rashba spin-orbit coupling term into the one-
electron Hamiltonian with disorder; it has been shown, that extended states belonging to each
spin split Landau level are scale invariant, and show multifractality in a similar way to the
spin unresolved Hamiltonian. As in the spin degenerate case, we found that the correlation
dimension D(2) of extended states near the center of each resolved level, shows universality
relative to disorder strength; but more importantly, it is also universal relative to the strength
of the spin-orbit coupling parameter. These findings seem to suggest, that disordered systems
under moderate magnetic fields, with a Rashba spin-orbit coupling interaction of any strength,
belong to the same universality class of the localization-delocalization transition observed in the
Integer Quantum Hall Effect.
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