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Abstract. We study the thermodynamics of near horizon near extremal Kerr (NHNEK)
geometry within the framework of AdS2/CFT1 correspondence. We start by shifting the horizon
of near horizon extremal Kerr (NHEK) geometry by a general finite mass. While this shift does
not alter the geometry in that the resulting classical solution is still diffeomorphic to the NHEK
solution, it does lead to a quantum theory different from that of NHEK. We obtain this quantum
theory by means of a Robinson-Wilczek two-dimensional Kaluza-Klein reduction which enables
us to introduce a finite regulator on the AdS2 boundary and compute the full asymptotic
symmetry group of the two-dimensional quantum conformal field theory on the respective AdS2

boundary. The s-wave contribution of the energy-momentum-tensor of this conformal field
theory, together with the asymptotic symmetries, generate a Virasoro algebra with a calculable
center, which agrees with the standard Kerr/CFT result, and a non-vanishing lowest Virasoro
eigenmode. The central charge and lowest eigenmode produce the Bekenstein-Hawking entropy
and Hawking temperature for NHNEK.

1. Introduction

Black hole thermodynamic quantities [1–3],{
TH = ~κ

2π Hawking Temperature

SBH = A
4~G Bekenstein-Hawking Entropy

(1)

have provided a testbed for most current competing theories of quantum gravity. It is widely
believed that any viable ultraviolet completion of general relativity should reproduce some
variant of (1), perhaps modulo some real finite parameter that would need to be fixed by
experiment. To date, there have been a range of different approaches for arriving at (1),
with string theories and loop quantum gravity being the predominant competitors but no clear
consensus on which approach should be preferred over the others.

Since Hawking’s original analysis of the density of quantum states in terms of Bogolyubov
coefficients, effective actions and their associated energy-momentum tensors for semiclassical
matter fields have been explored in various settings for arriving at TH [4, 5]. Of particular
interest is the realization by Robinson and Wilczek (RW) that anomalous two-dimensional chiral
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theories in the near horizon of black holes are rendered unitary by requiring the black hole to
radiate at temperature TH [6–9]. The RW procedure requires a dimensional reduction yielding
two-dimensional analogues (RW2DA) for various types of four-dimensional black holes, beyond
the basic Schwarzschild case, coupled to two-dimensional matter fields.

The AdS/CFT correspondence, i.e., the conjecture that quantum gravity on an anti-de Sitter
space is dual to a conformal field theory [10], has spawned a surge, led by Strominger [11, 12],
Carlip [13–16], Park [17–19] and others, in applying CFT techniques to compute Bekenstein-
Hawking entropy of various black holes. By far, the most notable example is the Kerr/CFT
correspondence and its extensions [12, 20], where the general idea is that the asymptotic
symmetry group (ASG), preserving certain metric boundary or fall off conditions, is generated
by a Virasoro algebra with a calculable central extension:

[Qm,Qn] = (m− n)Qm+n + c
12m

(
m2 − 1

)
δm+n,0, (2)

where m,n ∈ Z. The Bekenstein-Hawking entropy is then obtained from Cardy’s formula [21,22]
in terms of the central charge c and the normalized lowest eigenmode Q0 (without Casimir shift):

S = 2π

√
c · Q0

6
. (3)

Since surface gravity is usually employed in regulating the quantum charges of (2), thus leading
to a finite Q0, there is some difficulty in using (3) for the extremal Kerr geometry where surface
gravity, and therewith Hawking temperature, vanishes. To circumvent this, a thermal Cardy
formula is often employed:

S = π2

3 (cLTL + cRTR) (4)

where the subscripts L and R refer to the dual, two chiral CFT theories with central charges cL
and cR and Frolov-Thorne vacuum temperatures TL and TR which, in the near extremal case,
are

TL =
(GM)2

2πJ
and TR =

√
(GM)4 − (GJ)2

2πJ
. (5)

It follows that TL = 1
2π , TR = 0 in the extremal case, where GJ = M2. Further, since

cL = cR = c = 12J in the extremal case, we can readily obtain the near horizon extremal
Kerr (NHEK) entropy from (4), which has exactly the same form as the Bekenstein-Hawking
entropy:

SBH = π2

3 (cLTL + cRTR) = π2

3 cTL = 2πJ. (6)

Because of the equality of cL = cR, we can also identify a NHEK temperature,

T = TL + TR = 1
2π , (7)

which is in contrast to the vanishing Hawking temperature in this limit.
Note that, while the use of the thermal Cardy formula was motivated by the failure of

regularization of the quantum charges (2), a finite zero mode may be nevertheless inferred from
(6) by the identification

∂SCFT
∂Q0

=
∂SBH
∂Q0

≡ 1

T
⇒ Q0 = π2

6 cT
2. (8)
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Turning things around, the temperature T = 1
2π of (7) can be obtained as a general result from

(8) when the ASG of the CFT contains a proper SL(2,R) subgroup. From the definition (8)
we also see that T in general should be unitless (with ~ = 1). In passing, we note that an
interesting candidate for such a general temperature is the Hawking temperature scaled by the
finite time regulator 1/κ. This gives T = 1

2π , which also extends smoothly to extremality (a
similar identification can be found in [13,23]).

The desired general temperature result T = 1
2π motivates us to consider defining a general

Kerr entropy that reduces to (6) at extremality. To that end, if we combine the Frolov-Thorne
temperatures (5) with (7) and use cL = cR = c = 12J , we can obtain the standard area law

SBH = 2π
(
GM2 +

√
G2M4 − J2

)
. (9)

The drawback of this result is that it combines quantities derived separately at extremality and
near-extremality. It is also not obvious that the combination of temperatures in (5), T = TL+TR,
yields the value 1

2π , except in the extremal limit. However, since the extremal result c = 12J

is consistent with the general expression c = 3A
2πG , we may recast c, TL, TR in terms of more

general variables to obtain

c =
3A

2πG
, TL =

4(GM)2

A
and TR =

4
√

(GM)4 − (GJ)2

A
. (10)

Substituting (10) into (4) yields SBH = A
4G and, assuming they smoothly extend back to non-

extremality,

T = TL + TR =
4(GM)2

A
+

4
√

(GM)4 − (GJ)2

A
= 1

2π . (11)

Such a procedure would provide a more wholesome calculation of near-extremal Kerr black hole
entropy. This is precisely the aim of this note, i.e., to construct a CFT dual for the near horizon,
near extremal Kerr (NHNEK) geometry and compute its entropy by the statistical Cardy formula
(3), without mixing results derived separately at extremality and near-extremality. This will
require the computation of the full ASG, which we will do within an AdS2/CFT1 correspondence
by performing a RW two-dimensional reduction of the NHNEK geometry in a specific finite mass
gauge, following similar previous constructions [24].

2. Geometry

Consider the generic Kerr metric

ds2
Kerr =− Σ∆

(r2 + a2)2 −∆a2 sin2 θ
dt′2 + Σ

[
dr2

∆
+ dθ2

]

+

((
r2 + a2

)2 −∆a2 sin2 θ
)

sin2 θ

Σ

[
dφ′ +

2rGMa

(r2 + a2)2 −∆a2 sin2 θ
dt′
]2

,

(12)

where

Σ = r2 + a2 cos2 θ, ∆ = (r − r+) (r − r−) , r± = Gm±
√

(Gm)2 − a2, a = J
m . (13)

The NHEK geometry is a four-dimensional vacuum solution derived from the above Kerr metric
by introducing the transformations

r = Gm+ λU, t′ =
t

λ
, φ′ = φ+

t

2Gmλ
, (14)
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and taking the limit λ→ 0, known as the extremal near horizon limit:

ds2
NHEK =

1 + cos2 θ

2

[
−U

2

`2
dt2 +

`2

U2
dU2 + `2dθ2

]
+ `2

2 sin2 θ

1 + cos2 θ

(
dφ+

U

`2
dt

)2

, (15)

where `2 = 2G2M2. This extremal metric may be tuned to near-extremality via a finite
temperature gauge:

ds2
NHNEK =

1 + cos2 θ

2

[
−U

2 − ε2

`2
dt2 +

`2

U2 − ε2
dU2 + `2dθ2

]
+ `2

2 sin2 θ

1 + cos2 θ

(
dφ+

U

`2
dt

)2

,

(16)

where ε = 1
2λ (r+ − r−) is a finite excitation above extremality. The line elements (15) and

(16) are classically diffeomerophic, but they exhibit differing quantum theories. To extract the
details of these differences, we make one more tuning by adding a finite ADM mass parameter.
The resulting metric representing this finite mass gauge,

ds2
NHNEK =

1 + cos2 θ

2

[
−r

2 − 2rGM + a2

r2
+ + a2

dt2 +
r2

+ + a2

r2 − 2rGM + a2
dr2 +

(
r2

+ + a2
)
dθ2

]
+

2 sin2 θ

1 + cos2 θ

(
r2

+ + a2
) [
dφ+

(
r − 2GM

r2
+ + a2

)
dt

]2

,

(17)

is still diffeomorphic to (15) and (16), and clearly exhibits global AdS2×S2 topology, our reasons
for maintaining the same label NHNEK in (17). However, it is this form of the NHNEK metric
with the mass gauge that will prove useful for the tuning purposes in our CFT construction
and the calculation of the full ASG.

3. Quantum fields in NHNEK spacetime

Note that the NHNEK metric (15) is of the general form

ds2 = K1 (θ) g(2)
µνdx

µdxν +K2 (θ) e−2ϕdθ2 +K3 (θ) e−2ϕ [dφ+A]2 , (18)

where g
(2)
µν is the reduced two-dimensional metric (µ, ν = 0, 1), ϕ is a free scalar field and A is a

U(1) gauge field, collectively often called Kaluza-Klein fields. The two-dimensional field splitting
of (18) provides a robust platform for constructing CFT duals in the near extremal case by way
of the ASG of the Kaluza-Klein fields. We will now exploit the structure of (18) to examine the
near horizon matter theory of (17) via the RW dimensional reduction procedure. Our goal here
is to apply our previous techniques from [24–26] to study the resulting thermodynamics of the
NHNEK within an AdS2/CFT1 formalism.

3.1. RW dimensional reduction

Our initial ansatz leading to the NHNEK solution involved a specific decomposition of our four-
dimensional spacetime into a two-dimensional black hole and matter fields. It is necessary to
check that these fields are the correct RW2DA useful in a holographic study of the quantum
spacetime in the near horizon regime. To that end, let us consider a single free scalar field ϕ in
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the background of (17) with action:

Sfree =
1

2

∫
d4x
√
−ggµν∂µϕ∂νϕ

=− 1

2

∫
d4xϕ

[
∂µ
(√
−ggµν∂ν

)]
ϕ

=− 1

2

∫
d4xϕ

[
∂t

(
− sin θ

(
a2 + r2

+

) r2
+ + a2

r2 − 2rGM + a2
∂t

)
+

∂r

(
sin θ

(
a2 + r2

+

) r2 − 2rGM + a2

r2
+ + a2

∂r

)
+ ∂θ (sin θ∂θ) +

∂φ

({
− sin θ

(
a2 + r2

+

)(r − 2GM

r2
+ + a2

)2 r2
+ + a2

r2 − 2rGM + a2
+

(cos (2θ) + 3)2

16 sin θ

}
∂φ

)
+

2∂t

(
sin θ

(
a2 + r2

+

) r − 2GM

r2
+ + a2

r2
+ + a2

r2 − 2rGM + a2
∂φ

)]
ϕ.

(19)

The above functional is reduced to a two-dimensional theory by expanding the four-dimensional
scalar field in terms of spherical harmonics

ϕ(t, r, θ, φ) =
∑
lm

ϕlm(r, t)Y m
l (θ, φ), (20)

where ϕlm has the form of a complex interacting two-dimensional scalar field. Integrating out
angular degrees of freedom, transforming to tortoise coordinates dr∗ = f(r)dr and considering
the region very close to r+, we find that the two-dimensional action is much reduced. This is
due to the fact that all interaction, mixing and potential terms (∼ l(l + 1) . . .) are weighted by
a factor of f(r(r∗)) ∼ e2κr∗ , which vanishes exponentially fast as r → r+. This leaves us with
an infinite collection of massless charged scalar fields in the very near horizon region, with U(1)
gauge charge equal to the azimuthal quantum number e = m and remnant functional:

S = −
r2

+ + a2

2

∫
d2x ϕ∗lm

[
− 1

f(r)
(∂t − imAt)2 + ∂rf(r)∂r

]
ϕlm. (21)

Thus, we arrive at the RW2DA for the NHNEK solution given by:

g(2)
µν =

(
−f(r) 0

0 1
f(r)

)
(22)

and U(1) gauge field

A = Atdt. (23)

Given the initial ansatz (18), it is not surprising that the only relevant physical fields in
the region r ∼ r+ are the above RW2DAs, which reinforces the holographic statement that we
may learn much about the quantum nature of spacetime in the near horizon regime from the

semiclassical analysis of g
(2)
µν , A and ϕlm.
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3.2. Effective gravitational action and asymptotic symmetries

We would like to interpret (21) as a useful action for gravity in the near horizon of the classical
four-dimensional spacetime. This can be done by considering only the s-wave contribution and
making a field redefinition rendering the scalar field unitless [26]. The s-wave approximation
is sensible in this scenario since we will interpret ϕlm as a component of the gravitational field
and hence it should be real and unitless. Most of the interesting gravitational dynamics seem to
be contained in this region or approximation [27]. We also note that in [24] it was shown that
ϕlm dies exponentially fast in time by analyzing the asymptotic behavior of its field equation.
However, we find the statement relating ϕlm to a real gravitational field component, a stronger
justification to neglect higher order terms in l and m. These arguments motivate the field
redefinition

ϕ00 =

√
6

G
ψ, (24)

where ψ is now unitless and the
√

6 is chosen to recover the Einstein coupling 1
16πG in the

effective action (21) within the s-wave approximation. Using (24) in (21) gives

S(2)[ψ, g] =
3(r2

+ + a2)

G

∫
d2x

√
−g(2)ψ

[
Dµ

(√
−g(2)g µν

(2) Dν

)]
ψ, (25)

where Dµ is the gauge covariant derivative. In addition to re-dressing the scalar field, our
choice of field redefinition has also rendered the effective coupling unitless, hinting towards a
finite quantum theory. The effective action of this quantum theory, which may be extracted via
zeta-function regularization of the functional determinant in (25), is given by the sum of two
functionals [7, 28]:

Γ =Γgrav + ΓU(1), (26)

where

Γgrav =
(r2

+ + a2)

16πG

∫
d2x

√
−g(2)R(2) 1

�g(2)
R(2), ΓU(1) =

3e2(r2
+ + a2)

πG

∫
F 1

�g(2)
F , (27)

and R(2) is the Ricci scalar curvature obtained from g
(2)
µν , and F = dA is the U(1) invariant

curvature two form. Next, let us introduce the auxiliary scalars Φ and B satisfying:

�g(2)Φ = R(2) and �g(2)B = εµν∂µAν , (28)

which transform the functional (26) into a Liouville CFT of the form:

SNHCFT =
(r2

+ + a2)

16πG

∫
d2x

√
−g(2)

{
−Φ�g(2)Φ + 2ΦR(2)

}
+

3e2(r2
+ + a2)

πG

∫
d2x

√
−g(2)

{
−B�g(2)B + 2B

(
εµν√
−g(2)

)
∂µAν

} (29)

Now, we turn our attention to computing the ASG of (25). The behavior of the RW2DA fields
at large r is defined by

g(0)
µν =

 − r2

`2
+ 2rGM

`2
− a2

`2
+O

((
1
r

)3)
0

0 `2

r2
+O

((
1
r

)3)
 , (30)

A(0)
t =

r

`2
− 2GM

`2
+O

((
1
r

)3)
, (31)
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which yield an asymptotically AdS2 configuration with Ricci Scalar, R = − 2
l2

+O
((

1
r

)1)
, where

`2 = r2
+ + a2. In addition, we impose the following metric and gauge field fall-off conditions:

δgµν =

 O ((1
r

)3) O
((

1
r

)0)
O
((

1
r

)0) O (r)

 and δA = O
((

1
r

)0)
, (32)

which imply the following set of asymptotic metric preserving diffeomorphisms

ξn = ξ1(r)
einκ(t±r∗)

κ
∂t + ξ2(r)

einκ(t±r∗)

κ
∂r, (33)

where r∗ is the tortoise coordinate,

ξ1 = Creinκr
∗
, ξ2 =

irC(r −GM)

κn (r2 − 2rGM + a2)
, (34)

C is an arbitrary normalization constant and κ is the surface gravity of the NHNEK black hole.
Under diffeomorphisms (33), the gauge field transforms as:

δξAµ =
(
O
((

1
r

)0)
, O

((
1
r

)1))
(35)

and thus δξ may be elevated to a total symmetry of the action, i.e.,

δξ → δξ+Λ, (36)

in accordance with (32). Switching to light cone coordinates x± = t±r∗ (where large r behavior
will be synonymous with large x+ behavior), we see that the set ξ±n is well-behaved on the
r →∞ boundary and form a centerless Witt or Diff(S1) subalgebra:

i
{
ξ±m, ξ

±
n

}
= (m− n)ξ±m+n. (37)

3.3. Energy-momentum and the full ASG

We define the energy-momentum tensor and U(1) current of (29) in the usual way:

〈Tµν〉 =
2√
−g(2)

δSNHCFT

δg(2)µν

=
r2

+ + a2

8πG

{
∂µΦ∂νΦ− 2∇µ∂νΦ + g(2)

µν

[
2R(2) − 1

2
∇αΦ∇αΦ

]}
+

6e2(r2
+ + a2)

πG

{
∂µB∂νB −

1

2
gµν∂αB∂

αB

}
and

〈Jµ〉 =
1√
−g(2)

δSNHCFT
δAµ

=
6e2(r2

+ + a2)

πG

1√
−g(2)

εµν∂νB.

(38)

Next, solving the equations of motions for the auxiliary fields,

�g(2)Φ =R(2), �g(2)B = εµν∂µAν (39)
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using the metric (22) and gauge field (23) and employing the modified Unruh vacuum boundary
conditions [29] {

〈T++〉 = 〈J+〉 = 0 r →∞, `→∞
〈T−−〉 = 〈J−〉 = 0 r → r+

, (40)

we determine all relevant integration constants of (38) and (39). For large r and to O(1
` )

2, which
we will denote as the single limit r →∞ in the remainder of this section, the resulting energy-
momentum tensor is dominated by one holomorphic component, 〈T−−〉. We are interested in
the response of the energy-momentum tensor and the U(1) current to total symmetry δξ−n +Λ,

which may be obtained by the use of the boundary fields (30) and (31):δξ−n +Λ 〈T−−〉 = ξ−n 〈T−−〉
′ + 2 〈T−−〉 (ξ−n )

′
+

r2++a2

4πG (ξ−n )
′′′

+O
((

1
r

)3)
δξ−n +Λ 〈J−〉 = O

((
1
r

)3)
.

(41)

From this, we see that 〈T−−〉 transforms asymptotically as the energy-momentum tensor of a
one dimensional CFT with center:

c
24π =

r2++a2

4πG ⇒ c = 3A
2πG . (42)

We should also note that the above central charge is in congruence with the 2-dimensional
conformal/trace anomaly [30]: 〈

T µ
µ

〉
= − c

24π
R(2). (43)

3.4. Virasoro algebra

Next, we define the quantum generators from the conserved charges:

Qn = lim
r→∞

∫
dx− 〈T−−〉 ξ−n , (44)

The algebraic structure of these generators can be found by calculating response of (44) to a
total symmetry, while compactifying the x− coordinate to a circle from 0→ 2π/κ:

δξ−m+ΛQn = [Qm,Qn] = (m− n)Qn +
c

12
m
(
m2 − 1

)
δm+n,0, (45)

Hence, the quantum symmetry generators form a centrally extended Virasoro algebra with
regulated/normalized zero-mode Q0 = A

16πG .

3.5. AdS2/CFT1 and entropy of NHNEK

The main conclusion of the foregoing discussion is that, by employing the finite mass gauge (17),
it is possible to show that the near-extremal Kerr throat is holographically dual to a CFT with
center

c = 3A
2πG (46)

and lowest Virasoro eigenmode

Q0 = A
16πG . (47)
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We are now free to use the above results in the statistical Cardy Formula (3),

S = 2π
√

cQ0
6 = A

4G = 2π
(
GM2 +

√
G2M4 − J2

)
, (48)

which is in agreement with the area law (9). However, here we have derived it without mixing
results computed separately at near-extremality and extremality. In addition, c and Q0 extend
smoothly to extremality in the limit as a→ GM , giving

lim
a→GM

c = 12J and lim
a→GM

Q0 = J/2. (49)

The limiting value c here is identical to the left central charge obtained in the Kerr/CFT
correspondence [12] and, together with the limit of Q0, it reproduces the extremal Kerr entropy
by way of the statistical Cardy formula (3). In addition, our derived zero-mode in (46) is in
accordance with the following assertion [24]:

Assertion 1. The lowest Virasoro eigenmode of a quantum CFT is proportional to the
irreducible mass of its dual black hole,

Q0 = GM2
irr. (50)

Note that the irreducible mass is the final ADM mass state of a Kerr black hole after it has
completed its Penrose process. This assertion may have broad generality with a large avenue of
application, though we do not have a rigorous proof at this time.

3.6. Near extremal black hole temperature

To extract the NHNEK temperature, we will focus on the gravitational part of (29), i.e.,

Sgrav =
(r2

+ + a2)

16πG

∫
d2x

√
−g(2)

{
−Φ�g(2)Φ + 2ΦR(2)

}
. (51)

The energy-momentum is given by:

〈Tµν〉 =
2√
−g(2)

δSNHCFT
δg(2)µν

=
r2

+ + a2

8πG

{
∂µΦ∂νΦ− 2∇µ∂νΦ + g(2)

µν

[
2R(2) − 1

2
∇αΦ∇αΦ

]}
,

(52)

which, as before, may be brought to the form (40) by using (38). However, on the horizon limit
r → r+, we are left with just one holomorphic component,

〈T++〉 = −
r2

+ + a2

32πG
f ′
(
r+
)2
. (53)

This is precisely the Hawking flux (HF , radiation flux ∼ T t
r ) of the NHNEK metric, weighted

by the central charge (42),

〈T++〉 = cHF = −c π12 (TH)2 (54)

with Hawking temperature [31,32]

TH =
f ′ (r+)

4π
. (55)

This is an interesting result, for it suggests that the AdS2/CFT1 correspondence constructed here
contains information about both black hole entropy and black hole temperature. Though the
〈T++〉 component in the horizon limit is not precisely the Hawking flux of the four-dimensional
parent black hole, given prior knowledge of the central extension, it is possible to read off or
extract the relevant information from the correspondence.
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4. Concluding remarks

We have analyzed quantum near-extremal Kerr black hole properties in the near horizon regime
by way of AdS2/CFT1 correspondence, as outlined in Table 1. This extends our previous
work [24,25] to a new spacetime geometry. The main results of this work includes the derivation
of the central charge c = 3A

2πG from a Lagrangian analysis of conserved currents of two near
horizon theories and the correct quadratic two-form transformation law on the holographic
renormalized boundary. It is conceivable that other AdS2 × S2 gauges, exhibiting the field

CFT Black Hole

Conformal Group Asymptotic Symmetry Group
center 3A

2πG

Hamiltonian eigenvalue GM2
irr

Regulator κNHNEK

Table 1. Black-Hole/Near-Horizon-CFT Duality

splitting of (18), exist with physical relevance and connections to other classical near-extremal
solutions. Many analogues to the NHEK for charged rotating black holes with negative and
positive cosmological constants have been shown to exist (see [20] for a comprehensive review).
They suggest that there may exist similar such analogues to the NHNEK solution, to which the
line of reasoning of this note may be applicable. In particular, Assertion 1 may be a useful tool
in the asymptotic symmetry analysis of other extremal black holes. They have vanishing surface
gravity, a complication that is generally handled by the use of the thermal Cardy formula (4).
However, extremal black holes in general do have well defined horizons, which lead to a finite
non-zero irreducible mass. This fact enables us to invoke Assertion 1 to implement the standard
statistical Cardy formula (3) and obtain the Bekenstein-Hawking entropy for a wide class of
extremal black holes.

Acknowledgments
We thank Vincent Rodgers, Jacob Willig-Onwuachi, John Baker and Shanshan Rodriguez
for enlightening discussions. SW thanks the organizers of QuantumFest 2015 for their kind
invitation and extraordinary hospitality during the conference. This work was supported in
part by the HHMI Science Education Award 52006298 and the Grinnell College CSFS and
MAP programs.

This work was completed just before the passing of Sujeev Wickramasekara on December
28th, 2015. Sujeev was our friend, mentor, teacher and collaborator. A true visionary and
inspiration in his exemplification of a teacher-scholar and human being! He more than inspired
us to pursue greatness in all aspects of our life goals. His teachings and mentorship have and
will continue to influence and outline our lives. He is dearly missed and remembered always. . .

References
[1] Hawking S W 1975 Commun. Math. Phys. 43 199–220
[2] Bardeen J M, Carter B and Hawking S W 1973 Commun. Math. Phys. 31 161–170
[3] Bekenstein J D 1973 Phys. Rev. D 7 2333–2346
[4] Mukhanov V F, Wipf A and Zelnikov A 1994 Phys. Lett. B 332 283–291; hep-th/9403018
[5] Rodriguez L 2011 Black-hole/near-horizon-CFT duality and 4 dimensional classical spacetimes. Ph.D.

dissertation University of Iowa
[6] Robinson S P and Wilczek F 2005 Phys. Rev. Lett. 95 011303; gr-qc/0502074
[7] Iso S, Umetsu H and Wilczek F 2006 Phys. Rev. D 74 044017; hep-th/0606018

Quantum Fest 2015 IOP Publishing
Journal of Physics: Conference Series 698 (2016) 012010 doi:10.1088/1742-6596/698/1/012010

10



[8] Zampeli A, Singleton D and Vagenas E C 2012 JHEP 1206 097; gr-qc/1206.0879
[9] Das S, Robinson S P and Vagenas E C 2008 Int. J. Mod. Phys. D 17 533–539; gr-qc/0705.2233

[10] Maldacena J M 1998 Adv. Theor. Math. Phys. 2 231–252; hep-th/9711200
[11] Strominger A 1998 JHEP 02 009; hep-th/9712251
[12] Guica M, Hartman T, Song W and Strominger A 2009 Phys. Rev. D 80 124008; gr-qc/0809.4266
[13] Carlip S 2011 JHEP 1104 076; gr-qc/1101.5136
[14] Carlip S 1999 Phys. Rev. Lett. 82 2828–2831; hep-th/9812013
[15] Carlip S 2005 Class. Quant. Grav. 22 R85–R124; gr-qc/0503022
[16] Carlip S 1999 Class. Quant. Grav. 16 3327–3348; gr-qc/9906126
[17] Park M I and Ho J 1999 Phys.Rev.Lett. 83 5595; hep-th/9910158
[18] Park M I 2002 Nucl.Phys. B 634 339–369; hep-th/0111224
[19] Kang G, Koga J i and Park M I 2004 Phys. Rev. D 70 024005; hep-th/0402113
[20] Compere G 2012; hep-th/1203.3561
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