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2Dept. Physics and Astronomy, Brigham Young University, Provo, UT 84602, USA

E-mail: ricardo@fis.unam.mx,berrondo@byu.edu,pepe@fis.unam.mx

Abstract. We study the temporal evolution of a coherent state under the action of a
parametric oscillator immersed in a nonlinear Kerr-like medium. Applying a self consistent
method we obtain an approximate time evolution operator. This operator behaves like a
squeezing operator due to the temporal dependence of the oscillator’s frequency. We analyze
Mandel’s parameter, the presence of squeezing in the field quadratures and the generation of
photons from the vacuum state.

1. Introduction

Coherent states were introduced by Schrödinger in 1926 since the early stages of quantum
mechanics [1] in connection with the classical states of the quantum harmonic oscillator. These
quantum states are characterized by the fact that the trajectory of the center of the coherent wave
packet evolves in time in the same way as a classical harmonic oscillator and its dispersion takes
the minimum value allowed by Heisenberg’s principle. Much later, in 1963, Glauber introduced
the field coherent states, that is, coherent states for the electromagnetic field, as right eigenstates
of the annihilation operator. These states have played an important role in quantum optics [2].
The field coherent states can be obtained from any one of the three mathematical definitions: (i)
as the right hand eigenstates of the boson annihilation operator â|α〉 = α|α〉 with α a complex
number, (ii) as those states obtained by application of the displacement operator upon the
vacuum state of the harmonic oscillator D(α)|0〉 = |α〉 with D(α) = exp(αâ†−α∗â), and (iii) as
the quantum states with a minimum uncertainty product (∆p)(∆q) = 1/2 with ∆q = ∆p. The
coherent states obtained from any one of these definitions are identical when one makes use of
the harmonic oscillator algebra. Subject to a linear interaction a coherent state evolves into a
new coherent state, that is, they show temporal stability [3, 4].

In the presence of a nonlinear interaction, field coherent states evolve into non classical
states. This can be achieved experimentally by passing a coherent state through a Kerr medium
resulting in the appearance of distinguishable macroscopic superpositions of coherent states, the
so called cat states [5, 6].

The parametric harmonic oscillator, namely a harmonic oscillator with a time dependent
frequency, has been studied from several points of view: using the method of adiabatic
invariants [7–9], super symmetric quantum mechanics [10], algebraic methods [11], and different
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approximation methods [12] among others. A particularly relevant realization of the parametric
oscillator is cavity quantum electrodynamics (CQED) where the frequency of a given field
mode in the cavity can change in time due to the motion of the cavity walls or to changes
in the dielectric function of the medium [13]. For instance, Wineland et. al. [14] analyzed
both theoretically and experimentally the loss of coherence caused by fluctuations in the trap
parameters and in the amplitude and frequency of the laser beams, heating due to collisions with
background gas, internal state decoherence due to radiative decay, and coupling to spectator
levels.

In this work we consider a nonlinear system corresponding to a single mode field propagating
in a Kerr-like medium immersed in a cavity with a time dependent frequency. In Section 2
we write the Hamiltonian and construct its time evolution operator. In section 3 we follow
the evolution of coherent states under the nonlinear Hamiltonian and analyze some of their
statistical properties like the Mandel parameter, the average value of the number operator and
the dispersion of the quadratures.

2. Parametric oscillator in a Kerr medium

Consider a parametric harmonic oscillator immersed in a Kerr-like medium. Its Hamiltonian is
given by:

H(t) =
1

2
[p2 + Ω2(t)q2] +HKerr (1)

where Ω(t) is an explicit time dependent frequency and HKerr has to do with the Kerr-like
medium. We can define the usual annihilation, creation and number operators as:

â =
1√
2Ω0

(Ω0q + ip), â† =
1√
2Ω0

(Ω0q − ip), n̂ = â†â. (2)

where we have set ~ = 1 and we can write the Kerr medium [15] as HKerr = χn̂2, where χ is
proportional to a third-order nonlinear susceptibility χ(3). To be specific, in what follows we
will choose Ω(t) = Ω0[1 + 2κ cos(2Ω0t)] [16] with κ and χ small parameters. The Hamiltonian
can be written in terms of â†, â and n̂ as [17]:

H(t) = Ω0(n̂+ 1/2) + χn̂2 + g(t)(â2 + â†2 + 2n̂+ 1) (3)

and g(t) = Ω0κ cos(2Ω0t)(1 + κ cos(2Ω0t)).
The time evolution operator corresponding to the non linear time independent part of the

Hamiltonian is given by:
U0 = exp

(
−iΩ0t(n̂+ 1/2)− itχn̂2

)
(4)

and we can write the time dependent Hamiltonian in the interaction picture as

HI(t) = g(t)
(

e−2iΩ(n̂)tâ2 + â†2e2iΩ(n̂)t + 2n̂+ 1
)

(5)

where Ω(n̂) = Ω0 + 2χ(1 + n̂) is a function of the number operator.
The set {â†2, n̂, â2, 1} forms the basis of a Lie algebra closed under commutation. However, the

Hamiltonian HI(t) includes terms where the number operator appears in the exponent. Invoking
the mean field approximation [18] we make the replacement exp[±2iΩ(n̂)t] by 〈exp[±2iΩ(n̂)t]〉
obtaining:

HI(t) = g(t)
(
â2〈e−2iΩ(n̂)t〉+ â†2〈e2iΩ(n̂)t〉+ 2n̂+ 1

)
(6)

where the expectation value is taken with respect to the coherent state in the interaction picture
representation |α0〉I = UI |α0〉. The resulting approximate Hamiltonian is similar to that of a
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degenerate parametric amplifier where a non linear medium is pumped by a strong laser inducing
the emission and absorption of photon pairs [19].

With this simplification, the Hamiltonian in the interaction picture becomes an element of
the Lie algebra with time dependent coefficients and the corresponding time evolution operator
may be written in the product form [20]

HI(t) =

4∑
n=1

fn(t)Xn, UI(t) =

4∏
n=1

eαn(t)Xn . (7)

with initial conditions αn(t0) = 0, and we have chosen the ordering X1 = â†2, X2 = n̂, X3 = â2

and X4 = 1.
The average takes the form:

〈e±2iΩ(n̂)t〉 = e±2i(Ω0+2χ)t〈α0|U †I e±4iχtn̂UI |α0〉. (8)

Using

U †I n̂UI = [2α1e−2α2 ]â†2 + [1− 8α1α3e−2α2 ]n̂+ [2α3(4α1α3e−2α2 − 1)]â2 − [4α1α3e−2α2 ]

≡ a1â
†2 + a2n̂+ a3â

2 + a4 (9)

we obtain the following expression for the average:

〈e±2iΩ(n̂)t〉 = e±2i(Ω0+2χ)t〈α0|e±4iχt(a1â†2+a2n̂+a3â2+a4)|α0〉. (10)

Here the functions ai are complex functions of time, and we now face the problem of writing the
exponential in a product form.

If κ� 1 then a2 → 1 and ai → 0 for i = 1, 3, 4. In that case the average is given by:

e±2i(Ω0+2χ)t〈α0|e±4iχtn̂|α0〉 = e±2i(Ω0+2χ)t exp[|α0|2(e±4iχt − 1)]. (11)

If we take the average between initial coherent states |α0〉 instead of the evolved coherent states
|α0〉I we get the same result as that given by Eq. 11 (see [17]). For the general case we make
use of the fact that the set {â†2, â2, n̂, 1} is closed under commutation and we write [21, 22]:

exp

[
λ

N∑
n=1

αnÔn

]
= exp[φ1(λ)Ô1] · · · exp[φN (λ)ÔN ] (12)

where the set of functions {φi(λ)} must be determined under the constraint φi(λ = 0) = 0.
Consider first the case with a positive sign in the exponent. Then we write:

〈e2iΩ(n̂)t〉 = e2i(Ω0+2χ)t〈α0|e4iχt(a1â†2+a2n̂+a3â2+a4)|α0〉 (13)

using Eq. 12 we write

eλ[β1â†2+β2n̂+β3â2+β4] = eφ1(λ)â†2eφ2(λ)n̂eφ3(λ)â2eφ4(λ) (14)

where we have renamed βi = 4iχtai. From Eq. 14 we obtain the following set of ordinary
differential equations:

dφ1

dλ
= β1 + 2β2φ1 + 4β3φ

2
1,

dφ2

dλ
= β2 + 4β3φ1

dφ3

dλ
= β3e

2φ2 ,
dφ4

dλ
= β4 + 2β3φ1.
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This set of equations can be solved analytically (see Appendix A) and as a result we get:

lφ1(λ) =
β1 sinh(2Σλ)

2Σ cosh(2Σλ)− β2 sinh(2Σλ)
,

φ2(λ) = − ln[cosh(2Σλ)− β2

2Σ
sinh(2Σλ)]

φ3(λ) =
β3 sinh(2Σλ)

2Σ cosh(2Σλ)− β2 sinh(2Σλ)
,

φ4(λ) = (β4 − β2/2)λ− 1

2
ln[cosh(2Σλ)− β2

2Σ
sinh(2Σλ)]

where Σ =
√
β2

2/4− β1β3. Once we have found the functions φi(λ) we can take the average
given in Eq. 10, getting:

〈e2iΩ(n̂)t〉 = e2i(Ω0+2χ)teφ4+φ3α2
0+φ1α∗20 e|α0|2(eφ2−1) (15)

and

〈e−2iΩ(n̂)t〉 = e−2i(Ω0+2χ)teφ
∗
4+φ∗3α

∗2
0 +φ∗1α

2
0e|α0|2(eφ

∗
2−1) (16)

where the functions φi(λ) must be evaluated at λ = 1.
The complex, time dependent functions αn(t) needed to construct the time evolution operator

in the interaction picture are likewise obtained from the following set of coupled, nonlinear,
ordinary differential equations obtained after substitution of Eq. 7 into Schrödinger’s equation

dα1

dt
= −i(f1 + 2α1f2 + 4α2

1f3),
dα2

dt
= −i(f2 + 4α1f3)

dα3

dt
= −if3e2α2 ,

dα4

dt
= −i(f4 + 2α1f3)

where the functions fn correspond to the coefficients in the mean field Hamiltonian, namely:

f1 = g(t)〈e2iΩ(n̂)t〉, f2 = 2g(t), f3 = g(t)〈e−2iΩ(n̂)t〉, f4 = g(t).

At the initial time t0, the complex functions αn(t0) = 0 so that we can construct the functions
fn(t0) corresponding to the mean field Hamiltonian. With these we integrate for a time ∆t
and obtain new values for the functions αn(t = ∆t). At each step we produce a new value for
the functions fn(t) which is then used to compute the new αn(t). In this way we couple the
differential equations with the expectation value of the exponential of the number operator in a
self consistent way [18].

If we take the average value of the number operator (see Eq. 9) between number states |ni〉
we obtain:

〈ni|n̂(t)|ni〉 = [1− 8α1α3e−2α2 ]ni − [4α1α3e−2α2 ]. (17)

If instead, we take the average value using coherent states |α〉, then the corresponding
expectation value of the number operator is

〈α|n̂(t)|α〉 = [1− 8α1α3e−2α2 ]|α|2 − [4α1α3e−2α2 ] +

[2α3(4α1α3e−2α2 − 1)]α2 + [2α1e−2α2 ]α∗2. (18)

Notice that the behavior of 〈n̂(t)〉 is different depending upon the kind of averaging that is
chosen. In what follows we will use the averaging with respect to coherent states.
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3. Statistical properties
3.1. Mandel parameter

The Mandel parameter Q gives information about the nature of the photon statistics of any
state. It is defined as:

Q =
〈n̂2〉 − 〈n̂〉2

〈n̂〉
. (19)

For a state with Q in the range 0 ≤ Q < 1 the statistics are sub-Poissonian and for Q > 1,
super-Poissonian. A field coherent state has Q = 1. States with sub-Poissonian distribution are
non classical states [23]. When κ = 0 the time evolution operator is that given by Eq. 4, that is:

U = U0 and 〈α|U †0 n̂U0|α〉 = 〈α|n̂|α〉 = |α|2 and 〈α|U †0 n̂2U0|α〉 = |α|4 + |α|2 so that the Mandel
parameter is equal to one regardless of the value of χ.

In figure 1 we plot the temporal evolution of the Mandel parameter for fixed α with average
photon number 〈n̂〉 = 18 and potential parameters κ = 0.05, χ = 0.0 and Ω0 = 1 corresponding
to a parametric oscillator. In this case the Mandel parameter starts at one as corresponds to a
usual coherent state. When α = (3, 3) (green line) the Mandel parameter takes values smaller
than one at the beginning of the evolution corresponding to a non classical state and remains sub-
Poissonian for some time until it becomes larger than one and maintains an increasing behavior
as a function of time. The results for real α = (

√
18, 0) are shown in purple. As in the previous

case the Mandel parameter starts at one as corresponds to a usual coherent state but in contrast
with that case here it is always an increasing function of time taking values corresponding to a
classical state. The difference is due to the fact that for the evaluation of the Mandel parameter
we have taken the averages from Eq. 18 where the importance of the nature of α (it being real
or complex) is evident. The undulations are due to the temporal dependence of the oscillator’s
frequency. Also shown in the figure are the cases with κ = 0.7 and χ = 0.25 corresponding to
a nonlinear parametric oscillator. We present, in blue, the case for α = (

√
18, 0) and in red the

case for α = (3, 3). The general conduct is similar to that of the previous cases, however the
undulations we mentioned above are washed out and we see instead the appearance of strong
oscillations between intervals where the Mandel parameter remains practically constant. It is
precisely when these oscillations appear that the Mandel parameter changes. Notice that for
non negligible values of χ, the nonlinear term HKerr in the Hamiltonian becomes important in
the evolution of the system and is responsible for a slower change in the average value of the
number operator.

0 10 20 30 40 50 60 70
0.0

0.5

1.0

1.5

2.0

2.5

3.0

t

Q

Figure 1. Temporal evolution of the Mandel parameter for α =
√

18 (purple and blue), α = (3, 3) (green and
red), corresponding to an initial average number 〈n̂〉 = 18 and parameters κ = 0.05, χ = 0 (purple and green),
κ = 0.7, χ = 0.25 (blue and red). In all cases Ω0 = 1 and the initial condition used was α0 =

√
18.
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3.2. Average value of the number operator for the vacuum

If we evaluate the average number of photons with respect to the vacuum state we find an
exponential grow when χ = 0 and some undulations due to the temporal dependence of the
frequency (see figure 2, purple); this effect is related to the dynamical Casimir effect [24] namely
the generation of real photons starting from the vacuum. When the nonlinear term χ 6= 0 the
average number of photons with respect to the vacuum state decreases rapidly (see figure 2,
black, green and blue) with increasing oscillations as the value of χ increases. This conduct was
reported in [25] where they studied the interaction between two two-level atoms in a cavity with
time dependent frequency. The similarity with their results is due to the fact that the atoms in
the cavity emulate an intensity dependent refraction index.

0 10 20 30 40 50 60

0.01

0.1

1

10

100

t

XN
\ 0

Figure 2. Temporal evolution of the average value of the number operator with respect to the vacuum state.
Parameters used: χ = 0 (purple), χ = 0.025 (black), χ = 0.085 (green), χ = 0.25 (blue). In all cases κ = 0.05
and Ω0 = 1.

3.3. Squeezing and dispersions

In order to analyze the temporal behavior of different observables let us consider the temporal
evolution of the creation-annihilation operators. The creation operator in the Heisenberg picture
is given by

â†(t) = U †IU
†
0 â
†U0UI (20)

Applying the first transformation we get:

U †0 â
†U0 = eiχtn̂2

eiΩ0tn̂â†e−iΩ0tn̂e−iχtn̂2
= â†eiχt(2n̂+1)eiΩ0t (21)

The number operator appears in the exponential again. To be consistent with the approximation
used to get the interaction picture Hamiltonian (Eq. 6) we replace the exponential by its average
value, and apply the second transformation (only to the operator â†) obtaining:

â†(t) = U †â†U = ei(Ω0+χ)t〈e2iχtn̂〉U †I â
†UI = ei(Ω0+χ)t〈e2iχtn̂〉e−α2

[
â† − 2α3â

]
. (22)

Proceeding in a similar form for the annihilation operator we get:

â(t) =
[
â(eα2 − 4α1α3e−α2) + 2α1e−α2 â†

]
e−i(Ω0+χ)t〈e−2iχtn̂〉. (23)

The above expressions can be written as:(
â†(t)
â(t)

)
=

(
a11(t) a12(t)
a21(t) a22(t)

)(
â†

â

)
. (24)
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The complex, time dependent coefficients aij(t) fulfill the conditions a11(t) = a∗22(t) and
a12(t) = a∗21(t) (these have been checked numerically).

The quadratures q and p at time t are given by:

q(t) =
1√
2

[
â(t) + â†(t)

]
, p(t) =

i√
2

[
â†(t)− â(t)

]
(25)

Using the expressions given above we obtain

〈α|q(t)|α〉 =
1√
2

[α∗(a11(t) + a21(t)) + α(a12(t) + a22(t))] (26)

and

〈α|p(t)|α〉 =
i√
2

[α∗(a11(t)− a21(t)) + α(a12(t)− a22(t))] . (27)

And for q(t)2, p(t)2 we get:

〈α|q(t)2|α〉 =
1

2
[(a11(t) + a21(t))2α∗2 + (a12(t) + a22(t))2α2 +

2(a11(t) + a21(t))(a12(t) + a22(t))|α|2 + (a11(t) + a21(t))a12(t)

+(a12(t) + a22(t))a21(t) + 1] (28)

〈α|p(t)2|α〉 = −1

2
[(a11(t)− a21(t))2α∗2 + (a12(t)− a22(t))2α2 +

2(a11(t)− a21(t))(a12(t)− a22(t))|α|2 + (a11(t)− a21(t))a12(t)

+(a22(t)− a12(t))a21(t)− 1] (29)

with these expressions we can obtain the dispersions ∆q(t), ∆p(t).
In figure 3 we show the dispersions ∆q(t) (purple) and ∆p (green) for Hamiltonian parameters

κ = 0.05, χ = 0.0, Ω0 = 1 corresponding to a parametric oscillator. Notice that at the initial
time the state is a minimum uncertainty state with ∆q(t = 0) = ∆p(t = 0) = 1/

√
2 and as time

evolves the dispersions oscillate and are such that when one increases the other decreases and
there are regions where either ∆q or ∆p take values corresponding to a squeezed state. The
amplitude of the oscillations in the dispersions is an increasing function of time. However, the
presence of squeezing is maintained. In black we show the product ∆q(t)∆p(t). It can be seen
that it oscillates and at those times when the squeezing is present the product corresponds to
that of a minimum uncertainty state. For most of the time, the product ∆q∆p is larger and we
can say that these states are not minimum uncertainty states but for a limited set of instants of
time. A coherent state corresponding to a parametric oscillator does not evolve into a coherent
state.

In figure 4 we show the dispersion ∆q(t) (red) and the product ∆q∆p (black) for Hamiltonian
parameters κ = 0.7, χ = 0.25, Ω0 = 1, α = 3 + i3 and α0 =

√
18 corresponding to a nonlinear

parametric oscillator. At the initial time t = 0 the state is a minimum uncertainty state. At the
initial stages of the evolution there is squeezing present, this however does not last long and the
dispersion returns to that corresponding to a coherent state until after about t = 4π it oscillates
for a short time attaining values larger and smaller than 1/

√
2 and returning to 1/

√
2 until

about t = 8π. This conduct is repeated periodically. In black we show the product ∆q(t)∆p(t)
for the same set of potential parameters. It can be seen that the product corresponds practically
to a minimum uncertainty state with deviations at those times where squeezing is present.
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Figure 3. Dispersions ∆q (purple) and ∆p (green) and their product ∆q∆p (black) with parameters χ = 0,
κ = 0.05, α = 3 + i3, α0 =

√
18 and Ω0 = 1.
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Figure 4. Dispersions ∆q (red) and the product ∆q∆p (black) with parameters χ = 0.25, κ = 0.7, α = 3 + i3,
α0 =

√
18 and Ω0 = 1.

4. Conclusions

In this work we have built an approximate time evolution operator for a system composed
of a parametric oscillator in a nonlinear Kerr-like medium. The Hamiltonian is transformed
into the interaction picture and as a result we obtained a time dependent Hamiltonian that
contains the number operator in an exponential. In order to solve this problem we approximate
the exponential by its average value taken between time dependent coherent states. With this
simplification we can write the Hamiltonian in the interaction picture as an element of a finite
Lie algebra. The time dependent coefficients of this linear combination are obtained in a self
consistent form. The time evolution operator can then be expressed as a product of exponentials.
We calculated several statistical properties like the Mandel parameter the dispersions in the
quadratures and the generation of photons from the vacuum state. We found squeezing in
the quadratures due to the presence of quadratic creation and annihilation operators in the
Hamiltonian. The Mandel parameter yields sub-Poissonian statistics at the initial stages of the
evolution when α is complex and super-Poissonian statistics when α is real. When α is complex
the Mandel parameter is sub-Poissonian at the start and becomes super-Poissonian after some
time. For real α the Mandel parameter is always super-Poissonian.
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Appendix A
From the set of coupled, nonlinear, ordinary differential equations we got for the functions φi(t)
we see that equation 15 has the form of a Riccati equation:

y′(λ) = q0(λ) + q1(λ)y(λ) + q2(λ)y2(λ) (A.1)

with:
q0(λ) = β1(t), q1(λ) = 2β2(t), q2(λ) = 4β3(t) (A.2)

so that,

q′2(λ) = 0,→ q′2(λ)

q2(λ)
= 0, q2(λ) 6= 0. (A.3)

Introducing the variable z(λ) as:

φ1(λ)q2(λ) = −z
′(λ)

z(λ)
(A.4)

we obtain the following linear, second order equation with constant coefficients

z′′(λ)− 2β2(t)z′(λ) + 4β1(t)β2(t)z(λ) = 0 (A.5)

proposing a solution of the form z(λ) = exp(θλ) we get the characteristic polynomial

θ2 − 2β2(t)θ + 4β1(t)β3(t) = 0 (A.6)

with roots:

θ = β2(t)± 2Σ(t), Σ2(t) =
β2

2(t)

4
− β1(t)β3(t) (A.7)

so the function z(λ) can be written as:

z(λ) = A exp[(β2(t) + 2Σ(t))λ] +B exp[(β2(t)− 2Σ(t))λ] (A.8)

The constants A, B are fixed by the initial condition φi(t0) = 0 and we obtain finally:

φ1(λ) =
β1 sinh(2Σλ)

2Σ cosh(2Σλ)− β2 sinh(2Σλ)
(A.9)

substitution into the differential equation for φ2(λ) yields

dφ2(λ)

dλ
=
β2(t) cosh(2Σ(t)λ)− 2Σ(t) sinh(2Σ(t)λ)

cosh(2Σ(t)λ)− β2(t)
2Σ(t) sinh(2Σ(t)λ)

(A.10)

integrating we get

φ2(λ) = − ln [cosh(2Σ(t)λ)− (β2(t)/2Σ(t)) sinh(2Σ(t)λ)] (A.11)

substitution in the differential equation for φ3(λ) yields

dφ3(λ)

dλ
=

4Σ2(t)β3(t)

[2Σ(t) cosh(2Σ(t)λ)− β2(t) sinh(2Σ(t)λ)]2
(A.12)

integrating we get:

φ3(λ) =
β3(t) sinh(2Σ(t)λ)

2Σ(t) cosh(2Σ(t)λ)− β2(t) sinh(2Σ(t)λ)
(A.13)

Finally from the equation for φ4(λ) we get:

dφ4(λ)

dλ
= β4(t) +

2β1(t)β3(t) sinh(2Σ(t)λ)

2Σ(t) cosh(2Σ(t)λ)− β2(t) sinh(2Σ(t)λ)
(A.14)

integrating we obtain:

φ4(λ) = (β4(t)− β2(t)/2)λ− 1

2
ln [cosh(2Σ(t)λ)− β2(t)/(2Σ(t)) sinh(2Σ(t)λ)] (A.15)
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