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Abstract. The polynomial Heisenberg algebras (PHA) are deformations of the Heisenberg-
Weyl algebra characterizing the underlying symmetry of the supersymmetric partners of the
Harmonic oscillator. When looking for the simplest system ruled by PHA, however, we end up
with the harmonic oscillator. In this paper we are going to realize the first-order PHA through
the harmonic oscillator. The associated coherent states will be also constructed, which turn out
to be the well known even and odd coherent states.

1. Introduction

The polynomial deformations of the Heisenberg-Weyl algebra, polynomial Heisenberg algebras
(PHA) by short, start to be important in physics [1–6]. For example, the underlying algebraic
symmetry for the supersymmetric (SUSY) partners of the harmonic oscillator is precisely
described by a PHA. In addition, when looking for the general one-dimensional Schrödinger
Hamiltonians ruled by second (third) order PHA, the key turns out to be the determination
of a function which must satisfy the Painlevé IV (Painlevé V) equation [5]. As a consequence,
through this link it has been possible to design a simple method to generate solutions to these
non-linear second-order ordinary differential equations [6].

It is important to note that the spectrum for systems ruled by PHA can be obtained by
identifying the physical extremal states, those eigenstates of the Hamiltonian which belong also
to the kernel of the annihilation operator. In principle, the number of physical extremal states
could be equal to the order of the annihilation operator. However, we have observed in most of
the works that the number of extremal states is less than the order of the annihilation operator.

In this paper we would like to work with the simplest systems realizing the PHA. Moreover,
we want to explore the possibility that every extremal state, if possible, would have an eigenvalue
which is in the spectrum of the Hamiltonian. Once this has been done, we will construct the
associated coherent states and we will study their properties.

2. Polynomial Heisenberg algebras

In the standard harmonic oscillator (Heisenberg-Weyl) algebra there are three generators
H, a, a+ satisfying the following commutation relations:

[H, a+] = a+, [H, a] = −a, [a, a+] = 1, (1)
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where there is a linear dependence between the number operator N and the Hamiltonian H:

N = a+ a = H − 1
2 . (2)

On the other hand, the (m − 1)-th order polynomial Heisenberg algebras are deformations of
the oscillator algebra of kind [5]:

[H,L+m] = ωL+m, (3)

[H,L−m] = −ωL−m, (4)

[L−m,L+m] ≡ Nm(H + ω)−Nm(H) ≡ Pm−1(H), (5)

where the analogue of the number operator is now an m-th degree polynomial in H:

Nm(H) ≡ L+mL−m =

m∏
i=1

(H − Ei) . (6)

The most common realization of a PHA is a differential one, where H has the standard one-
dimensional Schrödinger form,

H = −1

2

d2

dx2
+ V (x), (7)

while L±m are differential ladder operators of order m-th.
The spectrum of H, Sp(H), can be obtained from the analysis of the Kernel KL−m of L−m. In

fact, it turns out that

L−m ψ = 0 ⇒ L+mL−m ψ =
m∏
i=1

(H − Ei)ψ = 0. (8)

Since KL−m in invariant under H,

L−m(Hψ) = (H + ω)L−mψ = 0 ∀ ψ ∈ KL−m , (9)

then a basis in KL−m can be chosen such that,

HψEi = EiψEi . (10)

The states ψEi are the so-called extremal states; departing from them we can build several energy
ladders with spacing ∆E = ω.

Depending on how many extremal states ψEi are eigenstates ofH (satisfying also the boundary
conditions), two possibilities appear:

(a) If s extremal states are eigenstates of H, {ψEi , i = 1, . . . , s}, there will be s energy ladders
arising from the iterated action of L+m onto ψEi .

(b) If for the j-th ladder it turns out that(
L+m
)n−1

ψEj 6= 0,
(
L+m
)n
ψEj = 0, (11)

then we will have

L−m(L+m)nψEj = L−mL+m(L+m)n−1ψEj =
m∏
i=1

(Ej + nω − Ei) (L+m)n−1ψEj = 0. (12)

Therefore Ek = Ej +nω for some k ∈ {s+1, . . . ,m}, j ∈ {1, . . . , s}; thus, Sp(H) will consist
of s− 1 infinite ladders and a finite one of lenght (n− 1)ω which starts from Ej and ends at
Ej + (n− 1)ω. We can conclude that Sp(H) can have up to m infinite ladders with spacing
∆E = ω between steps.
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3. Harmonic oscillator and polynomial Heisenberg algebras

It is possible to realize the PHA through the harmonic oscillator Hamiltonian H and deformed
versions ag, a

+
g of the standard annihilation and creation operators a, a+. One possibility is to

take ag = Pk−1(H)a, a+g = a+Pk−1(H), where Pk−1(x) is a polynomial of degree k − 1 with

real roots; then, the set of operators {H, ag, a+g } satisfy the commutation relations of Eqs. (3-5).
However, in these deformations it is typical that some extremal states have formal eigenvalues
which do not belong to Sp(H) .

We are looking for deformations of the annihilation and creation operators such that all
extremal states become physical and, consequently, from them we will generate infinite ladders
of eigenfunctions and eigenvalues of H. For that reason, let us take now a different deformation,

ag = a2, a+g = (a+)2. (13)

The operator set {H, ag, a+g } gives place to a first-order PHA with ω = 2 since,

[H, ag] = −2ag, (14)

[H, a+g ] = 2a+g , (15)

[ag, a
+
g ] = N(H + 2)−N(H), (16)

where

N(H) =
(
H − 1

2

) (
H − 3

2

)
. (17)

There are two extremal state energies,

E1 = E0 = 1
2 , E2 = E1 = 3

2 . (18)

Thus, the eigenvalues associated to the j-th ladder are

Ejn = Ej + 2n n = 0, 1, . . . , j = 1, 2. (19)

The corresponding eigenstates turn out to be

|ψjn〉 = |2n+ j − 1〉 =

√
(j − 1)!

(2n+ j − 1)!
(a+g )n|j − 1〉. (20)

The spectrum of H becomes,

Sp(H) = {E10 , E11 , . . . } ∪ {E20 , E21 , . . . }, (21)

which coincides with the harmonic oscillator spectrum, but seen from a different point of view:
the Hilbert space H is now decomposed as the direct sum of two orthogonal supplementary
subspaces, namely, H = H0 ⊕ H1 (a representation of both ladders can be seen in Figure 1).
Note that states in each subspace have definite parity: the ones in H0 have positive parity and
they are called even states, while those in H1 have negative parity, being called odd states.

4. Coherent states

Once we have identified the algebraic structure underlying the system under study, let us
derive the corresponding coherent states. We will look for them as eigenstates of the deformed
annihilation operator:

ag|α〉j = α|α〉j , j = 0, 1, (22)
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Figure 1: The two independent energy ladders (with level spacing ∆E = 2) associated to the first-order
polynomial Heisenberg algebra of Eqs. (14-16). Globally they give place to the harmonic oscillator spectrum with
the standard level spacing ∆E = 1.

where

|α〉j =
∞∑
n=0

Cn|2n+ j〉. (23)

We thus get the following recurrence relationship:

Cn+1 =
αCn√

(2n+ j + 2)(2n+ j + 1)
, (24)

which after iteration leads to:

Cn =

√
j!

(2n+ j)!
αnC0. (25)

Using C0 as a normalization constant, we finally obtain the coherent states we were looking for:

|α〉j =
1√

∞∑
n=0

|α|2n
(2n+j)!

∞∑
n=0

αn√
(2n+ j)!

|2n+ j〉. (26)

Some quantities useful to analyze the Heisenberg uncertainty relation for these coherent states
are the following:

〈x〉j = 〈p〉j = 0, (27)

〈x2〉j = |a|α〉j |2 + 1
2 + Re(α), (28)

〈p2〉j = |a|α〉j |2 + 1
2 − Re(α), (29)
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where

|a|α〉j |2 =


1

∞∑
r=0

|α|2r
(2r)!

∞∑
n=0

|α|2n+2

(2n+1)! = |α| tanh |α| for j = 0,

1
∞∑
r=0

|α|2r
(2r+1)!

∞∑
n=0

|α|2n
(2n)! = |α| coth |α| for j = 1.

(30)

Therefore:

(∆x)2j (∆p)
2
j =


(
|α| tanh |α|+ 1

2

)2 − [Re(α)]2 ≥ 1
4 for j = 0,(

|α| coth |α|+ 1
2

)2 − [Re(α)]2 ≥ 9
4 for j = 1.

(31)

Plots of these uncertainty relations are shown in Figure 2 for j = 0 and Figure 3 for j = 1.

Figure 2: Heisenberg uncertainty relation (∆x)20(∆p)20 of Eq. (31) for j = 0.

On the other hand, the mean energy value for a system being in a coherent state becomes:

〈H〉j = |a|α〉j |2 +
1

2
=

{
|α| tanh |α|+ 1

2 for j = 0,

|α| coth |α|+ 1
2 for j = 1.

(32)

It is also important to guarantee the completeness relation in the subspace Hj (remember that
H = H0 ⊕H1), namely: ∫

|α〉j j〈α|dµj(α) = Ij , j = 0, 1, (33)

where

dµj(α) =
1

π|α|

( ∞∑
r=0

|α|2r

(2r + j)!

)
fj(|α|2)d|α|dϕ. (34)
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Figure 3: Heisenberg uncertainty relation (∆x)21(∆p)21 of Eq. (31) for j = 1.

It turns out that the function fj(x) must satisfy:∫ ∞
0

xn−1fj(x)dx = Γ(2n+ j + 1). (35)

Thus, provided that Eq. (35) is satisfied, it is true that any state vector can be decomposed in
terms of our coherent states.

Finally, the time evolution of a coherent state is quite simple:

U(t)|α〉j = e−i(j+
1
2
)t|α(t)〉j , α(t) = α e−ikt. (36)

Let us consider next the following non-normalized coherent states:

|z〉 =
∞∑
n=0

zn√
n!
|n〉, (37)

|z〉j =

∞∑
n=0

z2n+j√
(2n+ j)!

|2n+ j〉, α = z2. (38)

Up to normalization, the states of Eq. (37) are the standard coherent states and those of Eq. (38)
are the even (j = 0) and odd (j = 1) coherent states [7–14] (see also the discussion at the end
of Section 3). The completeness relationship of Eq. (33) guarantees that |z〉 and |eiπz〉 can be
decomposed in terms of |z〉0 and |z〉1 as:

|z〉 = |z〉0 + |z〉1, |eiπz〉 = |z〉0 − |z〉1. (39)

On the other hand, from these equations we can solve |z〉0 and |z〉1 in terms of |z〉 and |eiπz〉.
After normalization we get that:

|z〉0 =
e−|z|

2/2√
2(1 + e−2|z|2)

[|z〉+ |eiπz〉], (40)

|z〉1 =
e−|z|

2/2√
2(1− e−2|z|2)

[|z〉 − |eiπz〉], (41)
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Figure 4: Diagram indicating the position in the complex plane of the standard coherent states which give place
to the even and odd coherent states |z〉0 and |z〉1.

which means that the even and odd coherent states are linear combinations of two standard
coherent states with opposite directions in the z complex plane, as it is represented in Figure 4.
The expressions (40-41) can be used now to identify in a simple way the wave packets for U(t)|z〉0
and U(t)|z〉1. In fact, the wavefunction for a normalized standard coherent state is [15]:

ψz(x) = 〈x|z〉 =

(
1

π

)1/4

e−
1
2
(x−〈x〉)2+ix〈p〉, (42)

with 〈x〉 =
√

2 Re(z) and 〈p〉 =
√

2 Im(z). Thus, the wavefunctions associated to |z〉0 and |z〉1
in Eqs. (40-41) are:

ψ0
z(x) = 〈x|z〉0 = N0

[
e−

1
2
(x−〈x〉)2+ix〈p〉 + e−

1
2
(x+〈x〉)2−ix〈p〉

]
, (43)

ψ1
z(x) = 〈x|z〉1 = N1

[
e−

1
2
(x−〈x〉)2+ix〈p〉 − e−

1
2
(x+〈x〉)2−ix〈p〉

]
, (44)

where

N0 =

(
1

π

)1/4 1√
2(1 + e−〈x〉2−〈p〉2)

, N1 =

(
1

π

)1/4 1√
2(1− e−〈x〉2−〈p〉2)

.

Finally, up to global phase factors the wavefunctions ψjz(x, t) = 〈x|U(t)|z〉j , j = 0, 1 arise
from the right hand side of Eqs. (43-44) substituting 〈x〉 by 〈x〉 cos t + 〈p〉 sin t and 〈p〉 by
〈p〉 cos t− 〈x〉 sin t. The corresponding probability densities are shown in Figure 5 for j = 0 and
in Figure 6 for j = 1.
Note that for certain times the probability density is maximum at x = 0 for the even coherent
states, while this never happens for the odd ones. It is interesting to observe also that the
coherent states U(t)|z〉0 and U(t)|z〉1 are cyclic, with a period τ = π which is half the period
of the oscillator (2π). This property reflects clearly the very quantum nature of the even and
odd coherent states compared with the somehow classical behavior of the standard ones, which
always have the period of the oscillator.

5. Conclusions

In this paper we have explored an interesting realization of the first-order polynomial Heisenberg
algebra. The generators of such an algebra are the harmonic oscillator Hamiltonian H and the
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Figure 5: Probability density |ψ0
z(x, t)|2 for the even coherent states.

Figure 6: Probability density |ψ1
z(x, t)|2 for the odd coherent states.

deformed annihilation and creation operators ag = a2, a+g = (a+)2. We have shown that the
two extremal states involved in our treatment are physical eigenstates of the Hamiltonian. We
have seen also that the two ladders generated from these extremal states are of infinite length,
and the associated coherent states become the so-called even and odd. We have realized that
the period of the even and odd coherent states is a fraction (1/2) of the original period (2π) for
the oscillator. This property indicates the very quantum nature of such coherent states. This
statement should be reinforced by calculating other quantities indicating how quantum a given
state is. We hope to perform this analysis in the near future.
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