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Abstract. In this paper we study the solvability of the Fredholm partial integral equations of
second type with degenerate kernels.

1. Introduction
Various problems of quantum mechanics [1], quantum field theory [2], partial differential
equations [3], mathematical physics [4], and a number of other problems are reduced to special
cases of the following integral equation

f(x, y) =

∫
Ω1

k1(x, s, y)f(s, y)dµ1(s) +

∫
Ω2

k2(x, t, y)f(x, t)dµ2(t)

+

∫
Ω1

∫
Ω2

k(x, s; y, t)f(s, t)dµ1(s)dµ2(t) + g(x, y). (1.1)

where Ω1 and Ω2 are sets with a finite Lebesgue measure in Rν1 and Rν2 , respectively and
k1 : Ω2

1 × Ω2 → C, k2 : Ω1 × Ω2
2 → C, k : Ω2

1 × Ω2
2 → C, g : Ω1 × Ω2 → C are given

measurable functions, µ1(·), µ2(·) are the Lebesgue measures on σ− algebras of subsets Ω1 and
Ω2, respectively.

The equation (1.1) contains a partial integrals, i.e. integrals in which an unknown function
f(x, y) is integrated by parts of variables. Therefore, this kind of equations are called partial
integral equations (PIE).

Solvability and properties of the solutions of PIE (1.1) depend on the spaces in which it is
considered. The solvability of PIE (1.1) on the space of continuous functions were investigated
in [5]-[8].

In 1975, Likhtarnikov and Vitova [9] studied spectral properties of partial integral operators.
In [9], the following restrictions were imposed: k1(x, s) ∈ L2(Ω1 × Ω1), k2(y, t) ∈ L2(Ω2 × Ω2)
and T0 = K = 0. In [10], spectral properties of partial integral operators (PIO) with positive
kernels were studied (under restriction T0 = K = 0)). In [11] spectral properties of PIO with
kernels of two variables in Lp, p ≥ 1 are studied. In [8], [12]-[14], for more general PIO’s with
continuous kernels or kernels in C(L1), spectral properties of the PIO and solvability of partial
integral equations in the space of C([a, b] × [c, d]) were studied. In [3] some applications of
partial integral equations and operators in solving problems of continuous mechanics, elasticity
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problems and other problems were considered. Until now, a solvability of PIE in the space L2

is left open. The present paper is devoted to this problem. Namely, we investigate a solvability
of problem for PIE with degenerate kernels from L2.

Let (Ω, ε, µ) be a measurable space with a finite measure, L0(Ω) be the ∗- algebra of
equivalence classes of all complex measurable functions on Ω and L∞(Ω) ⊂ L0(Ω) be a subalgebra
of equivalence classes of all bounded measurable functions on Ω. By [f ] we denote an equivalence
class containing a function f ∈ L0(Ω).

By L∞[L2(Ω1),Ω2] we denote the set of all complex measurable functions f(x, y) on Ω1×Ω2

satisfying the following condition: the integral

φ0(y) =

∫
Ω1

|f(x, y)|2dµ1(x)

exists for almost all y ∈ Ω2 and φ0 ∈ L∞(Ω2).
In the L∞[L2(Ω1),Ω2] we define L∞(Ω2) - valued inner product ⟨f, g⟩ by

⟨f, g⟩ = ⟨f, g⟩(y) =
∫
Ω1

f(x, y)g(x, y)dµ1(x).

Let φi, ψi ∈ L∞ [L2(Ω1),Ω2] , i = 1,m and

k1(x, s, y) =

m∑
i=1

φi(x, y)ψi(s, y), (x, s, y) ∈ Ω2
1 × Ω2.

Then the partial integral operator (PIO) T1 defined by

T1f(x, y) =

∫
Ω1

k1(x, s, y)f(s, y)dµ1(s)

is linear and bounded on L2(Ω1 × Ω2).
In this paper we study the solvability of the partial integral equation

f − T1f = g, (1.2)

in space L2(Ω1 × Ω2), where g = g(x, y) ∈ L2(Ω1 × Ω2) is a given function.

2. Solvability of nonhomogeneous partial integral equation with degenerate kernel
If g(x, y) ̸= θ, then PIE (1.2) is called nonhomogeneous Fredholm PIE (NPIE) of second type
with degenerate kernel. The homogeneous partial integral equation (HPIE) corresponding the
NPIE (1.2) has the following form

h− T1h = θ. (2.1)

We define measurable functions τij on Ω2 by

τij(ω) =

∫
Ω1

ψi(s, ω)φj(s, ω)dµ1(s), , i, j = 1, ...,m.

One can see that τij ∈ L∞(Ω2).
Let e be an identity element of the algebra L∞(Ω2), i.e. e(ω) = 1 for almost all ω ∈ Ω2.
Now we define m ×m matrices T and I, respectively, whose entries are elements of L0(Ω2),

as follows
T = T(ω) = (τij(ω))i,j=1,m, I = I(ω) = (δij(ω))i,j=1,n,
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where δii(ω) = e(ω) and δij(ω) = θ(ω) at the i ̸= j.
Let D1(ω) be a function on Ω2 given by

D1(ω) = det(T(ω)− I(ω)), ω ∈ Ω2.

One can see that D1(ω) is a measurable function. Moreover, we have D1 = D1(ω) ∈ L∞(Ω2).
The function D1 is called a determinant Fredholm of PIE (1.2).

Let ϕ ∈ L0(Ω). We define its support by the equality s(ϕ) = sϕ = [χΩ(ϕ̸=0)].

Theorem 2.1. If s(D1) = e (i.e. D1(ω) ̸= 0 for almost all ω ∈ Ω2), then the HPIE (2.1) has a
trivial solution in L2(Ω1 × Ω2), and the NPIE (1.2) has a unique solution in L0[L2(Ω1)].

Proof. Suppose that h(x, y) is a solution HPIE (2.1). Let us denote

bi(ω) =

∫
Ω1

ψi(s, ω)h(s, ω)dµ1(s), i = 1, . . . ,m. (2.2)

Obviously, bi ∈ L2(Ω2) and

h(x, y) =
m∑
i=1

bi(y)φi(x, y). (2.3)

From the equality (2.2) and (2.3) we obtain the following system of equations for the unknown
functions b1(y), . . . , bm(y):

bi(y) =
m∑
j=1

τij(y)bj(y), i = 1, . . . ,m.

Consequently, 

(τ11(y)− 1)b1(y) + τ12(y)b2(y) + · · ·+ τ1m(y)bm(y) = θ(y),

τ21(y)b1(y) + (τ22(y)− 1)b2(y) + · · ·+ τ2m(y)bm(y) = θ(y),

.............................................................................................

τm1(y)b1(y) + τm2(y)b2(y) + · · ·+ (τmm(y)− 1)bm(y) = θ(y).

(2.4)

We can rewrite the last system (2.4) in matrix form as follows:

(T− I)b = θ, (2.5)

where b = b(ω) columns of the matrix which consisting of functions b11 = b1(y), b21 =
b2(y), ..., bm1 = bm(y).

Let sD1 = e. Then D1(ω) ̸= 0 for almost all ω ∈ Ω2. It follows that, for almost all y ∈ Ω2

equations (2.4) has only a trivial solution, i.e. the equation (2.5) has only zero solution: b = θ.
An arbitrary solution of the NPIE (1.2) has the form

f(x, y) = g(x, y) +

m∑
i=1

bi(y)φi(x, y),

where bi(y) =
∫
Ω1
ψi(s, y)f(s, y)dµ1(s).

Let

ai(ω) =

∫
Ω1

ψi(s, ω)g(s, ω)dµ1(s).
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It is clear that ai ∈ L2(Ω2). For unknown functions b1(y), ..., bm(y) we obtain the system of
equations 

(1− τ11(ω))b1(ω)− τ12(ω)b2(ω)− · · · − τ1m(ω)bm(ω) = a1(ω),

−τ21(ω)b1(ω)− (1− τ22(ω))b2(ω) + · · ·+ τ2m(ω)bm(ω) = a2(ω),

.......................................................................................................

−τm1(ω)b1(ω)− τm2(ω)b2(ω)− · · · − (1− τmm(ω))bm(ω) = am(ω).

Put D̃1(ω) = det(I(ω)− T(ω)) = −D1(ω).
a) if s(ai) = θ for all i ∈ {1, ...,m}, then g(x, y) = θ is a solution of the HPIE (1.2) and there

is not another solution of the equation (1.2).
b) Assume that, for some i0 ∈ {1, ...,m} one has s(ai0) ̸= θ. We define measurable functions

∆1(ω), ∆2(ω), ...,∆m(ω) on Ω2 as follows: the elements in k – th column of the determinant
det(I(ω)−T(ω)) we replace by the functions a1(ω), a2(ω), ..., am(ω) and the resulting determinant
is denoted by ∆k(ω). For example,

∆1(ω) =

∣∣∣∣∣∣∣∣∣∣∣∣

a1(ω) −τ12(ω) . . . −τ1m(ω)

a2(ω) 1− τ22(ω) . . . −τ2m(ω)

. . . . . . . . . . . .

am(ω) −τm2(ω) . . . 1− τmm(ω)

∣∣∣∣∣∣∣∣∣∣∣∣
.

It is easy to see that ∆k ∈ L2(Ω2), k ∈ {1, ...,m}.
Let ω ∈ Ω2 is a fixed element. In L2(Ω1) we consider the Fredholm second type equation

φ(x)− (Kωφ)(x) = g(x, ω), (2.6)

where

Kωφ(x) =

∫
Ω1

k1(x, s, ω)φ(s)dµ1(s).

The equation (2.6) for every ω ∈ Ω2 has a unique solution

φ(x) = φω(x) = g(x, ω)−
m∑
i=1

∆i(ω)

D1(ω)
φi(x, ω).

Clearly, the function

f0(x, y) = g(x, y)−
m∑
i=1

∆i(y)

D1(y)
φi(x, y) (2.7)

belongs to L0[L2(Ω1),Ω2] and
f0 − T1f0 = g,

i.e. f0 is a solution of (1.2).
Now we prove the uniqueness of the solution f0 for the equation (1.2). Let f1 ∈ L0[L2(Ω2)]

be a solution of (1.2) and f1 ̸= f0. Then from the equality f1 − T1f1 = g for a.e. ω ∈ Ω2 we get

f1(x, ω)− (T1f1)(x, ω) = g(x, ω),
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which means

f1(x, ω)− (Kωf1)(x, ω) = g(x, ω) a.e. ω ∈ Ω2.

By the uniqueness of the solution of the Fredholm equation (2.6), we obtain

f1(x, ω) = g(x, ω)−
m∑
i=1

∆i(ω)

D1(ω)
φi(x, ω)

for a.e. ω ∈ Ω2, i.e. f1(x, y) = f0(x, y).

3. Solvability of homogeneous partial integral equation with degenerate kernel
We define linear operators Akf(x, y) = ∆f,k(y), k = 1,m, on the space L2(Ω1 × Ω2), here
∆f,k(ω) corresponds to the determinant, which instead of k-th column of the determinant
det(I(ω)− T(ω)) for the following functions:

af,1(ω) =

∫
Ω1

ψ1(s, ω)f(s, ω)dµ1(s), . . . , af,m(ω) =

∫
Ω1

ψm(s, ω)f(s, ω)dµ1(s),

respectively.
By Theorem 2.1 and equality (2.7), we get the following theorem

Theorem 3.1. Let s(D1) = e. If D−1
1 ∈ L∞(Ω2), then the operator I − T1 (I is the identity

operator) is invertible and

(I − T1)
−1f(x, y) = f(x, y) +

1

D1(y)
(S1f)(x, y),

where

S1f(x, y) =

m∑
i=1

φi(x, y)Aif(x, y), f ∈ L2(Ω1 × Ω2).

Remark 3.2. Note that each Ai is a linear bounded operator on L2(Ω1 × Ω2) and it is PIO as
well.

Theorem 3.3. Let s(D1) ̸= e. Then HPIE (2.1) has a nontrivial solution in the L2(Ω1 × Ω2)
and moveover, any solution h(x, y) of the equation (2.1) has the form

h(x, y) =

m∑
j=1

(e(y)− sD1(y))bj(y)φj(x, y),

where bk ∈ L2(Ω2) is arbitrary, k ∈ {1, ...,m}.

Proof. Let h ∈ L2(Ω1 ×Ω2) be a solution of the equation (2.1). Then the function h has a form

h(x, y) =

m∑
i=1

di(y)φi(x, y),

where di ∈ L2(Ω2) is arbitrary. Let D0 = {ω ∈ Ω2 : D1(ω) = 0} and D1 = Ω2 \ Ω0. For each
ω ∈ Ω2 we consider the homogeneous Fredholm’s equation of the second type in L2(Ω1):

φ(x)− (Kωφ)(x) = θ. (3.1)
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By the Fredholm’s theorem for all ω ∈ D1 the equation (3.1) has only a trivial solution
φ(x) = φω(x) = θ, and for all ω ∈ D0 the equation (3.1) has not trivial solution in L2(Ω1). For
ω ∈ D0 the solution of the equation (3.1) has a form

φ(x) = φω(x) =

m∑
i=1

diφi(x, y),

where di(ω) ∈ C is an arbitrary number.
Put

h(x, y) =

m∑
i=1

(e(y)− D1(y))bi(y)φi(x, y). (3.2)

It is easy to verify that

h(x, y) =


θ, if ω ∈ D1,

m∑
i=1

bi(ω)φi(x, ω), if ω ∈ D0.

Hence, h(x, ω) ∈ L2(Ω1) is a solution of (3.1). It is easy to see that h(x, y) ∈ L2(Ω1 × Ω2)
and the function h(x, y) (3.2) is a solution of the HPIE (2.1).
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