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Abstract. We give a condition of extemelity for translation-invariant Gibbs measures of
q−state Potts model on a Cayley tree. We’ll improve the regions of extremality for some
measures considered in [14]. Moreover, some results in [14] are generalized.

1. Introduction
The Potts model is a generalization of the Ising model. In [3], [4] the q-state Potts model
on a Cayley tree of order k ≥ 2 was studied, and it has been known for a long time that
at sufficiently low temperatures, there are at least q + 1 translation-invariant Gibbs measures.
This measures can be considered as tree-indexed Markov chains. Such translation-invariant
tree-indexed measures are equivalently called translation- invariant splitting Gibbs measures
(TISGMs).

In [6] the uniqueness of the translation-invariant Gibbs measure of the antiferromagnetic
Potts model with an external field is proved. In [7] the Potts model with a countable number
of states and nonzero external field on a Cayley tree was considered. In that paper, it was
established that the model has a unique translation-invariant Gibbs measure.

In [13] all TISGMs (tree-indexed Markov chains) for the Potts model are found on the Cayley
tree of order k ≥ 2, and it is shown that at sufficiently low temperatures their number is 2q − 1.
In the case k = 2 the explicit formulae for the critical temperatures and all TISGMs are given.
Further, in [14] by means of methods and results of [10], [21], [15] it has been found some regions
for the temperature parameter ensuring that a given TISGM is (non-)extreme in the set of all
Gibbs measures. In particular, it was shown the existence of a temperature interval for which
there are at least 2q−1 + q extreme TISGMs. In case of the order of the tree is two, it was given
an explicit formulae and some numerical values of the critical temperature. Note that other
properties of the Potts model on a Cayley tree were studied in [1, 5, 8, 9, 11, 12],[17]-[20].

In this paper, we consider the q−state Potts model on the Cayley tree of order two. Some
results of [14] will be improved. Moreover, we will extend Theorem 6 of [14].

2. Definitions and known facts
A Cayley tree ℑk of order k ≥ 1 is an infinite tree, i.e. a graph without cycles, such that exactly
k + 1 edges originate from each vertex. Let ℑk = (V, L, i), where V is the set of vertices ℑk, L
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the set of edges and i is the incidence function setting each edge l ∈ L into the correspondence
with its endpoints x, y ∈ V . If i(l) = {x, y}, then the vertices x and y are called the nearest
neighbors, denoted by l = ⟨x, y⟩. The distance d(x, y), x, y ∈ V on a Cayley tree is defined by

d(x, y) = min {d|∃x = x0, x1, . . . , xd−1, xd = y ∈ V such that ⟨x0, x1⟩, . . . , ⟨xd−1, xd⟩}.

For a fixed x0 ∈ V we set Wn = {x ∈ V | d(x, x0) = n},

Vn = {x ∈ V | d(x, x0) ≤ n}, Ln = {l = ⟨x, y⟩ ∈ L | x, y ∈ Vn}.

Put
S(x) = {y ∈ Wn+1 : d(x, y) = 1}, x ∈ Wn.

Namely, S(x) is the set of direct successors of x.
We consider the model in which the spin variables take values in the set Φ = {1, 2, . . . , q},

(q ≥ 2) and which are located at the tree vertices. For A ⊂ V a configuration σA on A is an
arbitrary function σA : A → Φ. Note that ΩA = ΦA is the set of all configurations. We denote
that Ω = ΩV and σ = σV .

A Hamiltonian of the Potts model is defined as

H(σ) = −J
∑

⟨x,y⟩∈L

δσ(x)σ(y), (2.1)

where J ∈ R and δij is the Kronecker symbol.
In this paper, we restrict ourselves to the case of ferromagnetic interaction J > 0.
Define a finite-dimensional distribution of a probability measure µ in the volume Vn by

µn(σn) = Z−1
n exp

{
−βHn(σn) +

∑
x∈Wn

hσ(x),x

}
, (2.2)

where β = 1/T , T > 0-temperature, Z−1
n is the normalizing factor, {hx = (h1,x, . . . , hq,x) ∈

Rq, x ∈ V } is a collection of vectors, and

Hn(σn) = −J
∑

⟨x,y⟩∈Ln

δσ(x)σ(y)

is the restriction of Hamiltonian to Vn.
The probability distributions (2.2) are called compatible if for all n ≥ 1 and σn−1 ∈ ΦVn−1 :∑

ωn∈ΦWn

µn(σn−1 ∨ ωn) = µn−1(σn−1), (2.3)

here σn−1 ∨ ωn is the concatenation of configurations. In this case, by the well-known
Kolmogorov’s extension theorem, there exists a unique measure µ on ΦV such that, for all
n and σn ∈ ΦVn

µ({σ ∈ Ω : σ|Vn = σn}) = µn(σn).

This measure µ is called a splitting Gibbs measure corresponding to the Hamiltonian (2.1) and
vector-valued function hx, x ∈ V .

The following statement describes conditions on h̃x guaranteeing compatibility of {µn}.
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Theorem 2.1. (see [3], [19, p.106]) The probability distributions µn, n = 1, 2, . . ., in (2.2) are
compatible iff for any x ∈ V \ {x0} the following equation holds:

hx =
∑

y∈S(x)

F (hy, θ), (2.4)

where F : h = (h1, . . . , hq−1) ∈ Rq−1 → F (h, θ) = (F1, . . . , Fq−1) ∈ Rq−1 is defined by

Fi = ln

(
(θ − 1)ehi +

∑q−1
j=1 e

hj + 1

θ +
∑q−1

j=1 e
hj

)
,

θ = exp(Jβ), and hx = (h1,x, . . . , hq−1,x) with

hi,x = h̃i,x − h̃q,x, i = 1, . . . , q − 1. (2.5)

From Theorem 2.1 it follows that for any h = {hx, x ∈ V } satisfying (2.4) there exists a
unique SGM µ for the Potts model.

Note that a translation-invariant splitting Gibbs measure (TISGM) corresponds to a solution
hx of (2.4) with hx = h = (h1, . . . , hq−1) ∈ Rq−1 for all x ∈ V . Then from equation (2.4) we get
h = kF (h, θ), and denoting zi = exp(hi), i = 1, . . . , q − 1, the last equation can be written as
follows

zi =

(
(θ − 1)zi +

∑q−1
j=1 zj + 1

θ +
∑q−1

j=1 zj

)k

, i = 1, . . . , q − 1. (2.6)

From [13] the following facts are known:
1. By solving (2.6) the full set of TISGMs is described. It is shown that any TISGM of the

Potts model corresponds to a solution of the following equation

z = fm(z) ≡
(
(θ +m− 1)z + q −m

mz + q −m− 1 + θ

)k

, (2.7)

for some m = 1, . . . , [q/2].
2. Let θm = 1+2

√
m(q −m), m = 1, . . . , q−1.. If θ < θ1 then there exists a unique TISGM

for k ≥ 2, J > 0. Moreover, each θm is a critical value for the change of the number of TISGMs.

3. Extremity conditions
Following [14], to check the extremity of the Gibbs measure, we apply arguments of a
reconstruction on trees [2], [10], [16].

From [14] it is known that for each fixed m, the equation (2.7) has up to three solutions:
z0 = 1, zi = zi(θ, q,m), i = 1, 2, with z1 < z2 (see [13, Step 1 of the proof of Theorem 1]). Denote
by µi = µi(θ,m) the TISGM of the Potts model which corresponds to the solution zi.

For l = (z, z, . . . , z︸ ︷︷ ︸
m

, 1, 1, . . . , 1︸ ︷︷ ︸
q−m

) a TISGM corresponding to a vector l ∈ Rq is a tree-indexed

Markov chain with states {1, 2, . . . , q} and transition probabilities matrix P = (Pij) with

Pij =
lj exp(Jβδij)∑q
r=1 lr exp(Jβδir)

. (3.1)
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From (3.1) we get

Pij =



θz/Z1, if i = j, i ∈ {1, . . . ,m}
z/Z1, if i ̸= j, i, j ∈ {1, . . . ,m}
1/Z1, if i ∈ {1, . . . ,m}, j ∈ {m+ 1, . . . , q}

z/Z2, if i ∈ {m+ 1, . . . , q}, j ∈ {1, . . . ,m}
θ/Z2, if i = j, i ∈ {m+ 1, . . . , q}
1/Z2, if i ̸= j, i, j ∈ {m+ 1, . . . , q},

(3.2)

where
Z1 = (θ +m− 1)z + q −m, Z2 = mz + θ + q −m− 1.

Let us first give some necessary definitions from [15]. Considering finite complete subtrees
T that are initial points of Cayley tree Γk, i.e. share the same root; if T has depth d (i.e. the
vertices of T are within distance ≤ d from the root) then it has (kd+1 − 1)/(k− 1) vertices, and
its boundary ∂T consists the neighbors (in Γk \ T ) of its vertices, i.e., |∂T | = kd+1. We identify
subgraphs of T with their vertex sets and write E(A) for the edges within a subset A and ∂A
for the boundary of A, i.e., the neighbors of A in (T ∪ ∂T ) \A.

For a given subtree T of Γk and a vertex x ∈ T , we write Tx for the (maximal) subtree of T
rooted at x. When x is not the root of T , let µs

Tx denote the (finite-volume) Gibbs measure in
which the parent of x has its spin fixed to s and the configuration on the bottom boundary of
Tx (i.e., on ∂Tx \ {parent of x}) is specified by τ .

For two measures µ1 and µ2 on Ω, ∥µ1 − µ2∥x denotes the variation distance between the
projections of µ1 and µ2 onto the spin at x, i.e.,

∥µ1 − µ2∥x =
1

2

q∑
i=1

|µ1(σ(x) = i)− µ2(σ(x) = i)|.

Let ηx,s be the configuration η with the spin at x set to s.
Following [15] we define

κ ≡ κ(µ) = sup
x∈Γk

max
x,s,s′

∥µs
Tx − µs′

Tx∥x;

γ ≡ γ(µ) = sup
A⊂Γk

max ∥µηy,s

A − µηy,s
′

A ∥x,

where the maximum is taken over all boundary conditions η, all sites y ∈ ∂A, all neighbors
x ∈ A of y, and all spins s, s′ ∈ {1, . . . , q}.

We apply [15, Theorem 9.3], which says that for an arbitrary channel P = (Pij)
q
i,j=1 on a

tree reconstruction of the corresponding tree-indexed Markov chain (splitting Gibbs measure)
is impossible if kκγ < 1.

Note that κ has the particularly simple form (see [15])

κ =
1

2
max
i,j

∑
l

|Pil − Pjl| (3.3)

and γ is a constant which does not have a clean general formula, but can be estimated in specific
models (as Ising, Hard-Core etc.). For example, if P is the symmetric channel of the Potts model
(i.e. corresponding to the solution z = 1) then γ ≤ θ−1

θ+1 [15, Theorem 8.1].
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Using (3.3) and (3.2) for i ̸= j we get (see [14])

1

2

q∑
l=1

|Pil − Pjl| =


a, if i, j = 1, . . . ,m

b, if i, j = m+ 1, . . . , q

c, otherwise,

where a and b are defined by

a =
(θ − 1)z

Z1
, b =

(θ − 1) k
√
z

Z1
, (3.4)

Z1 = (θ +m− 1)z + q −m, Z2 = mz + θ + q −m− 1,

c =
1

2Z1

(
z|θ − k

√
z|+ |1− θ k

√
z|+ (z(m− 1) + q −m− 1)|1− k

√
z|
)
.

Clearly,

κ =

{
max{b, c}, if m = 1

max{a, b, c} if m ≥ 2.
(3.5)

We consider the case z ̸= 1 (where z = x2 and x is a solution to (2.7)) and fix the solution
of (2.6), which has the form (z, z, . . . , z︸ ︷︷ ︸

m

, 1, . . . , 1) and the corresponding matrix is P.

For p1, p2, u ≥ 0, p1 + p2 + u ≤ 1, define the following functions

K1(p1, p2, u) =
θzp1

(θ − 1)zp1 + (1− z)u+ z
− zp1

(θ − 1)zp2 + (1− z)u+ z
;

K2(p1, p2, u) =
θzp1

(θ − 1)zp1 + (1− z)u+ z
− zp1

(θ − 1)p2 + (1− z)u+ z
;

K3(p1, p2, u) =
θp1

(θ − z)p1 + (1− z)u+ z
− p1

(θ − 1)zp2 + (1− z)(u+ p1) + z
;

K4(p1, p2, u) =
θp1

(θ − z)p1 + (1− z)u+ z
− p1

(θ − 1)p2 + (1− z)(u+ p1) + z
.

Proposition 3.1. [14]

1) If z ≥ 1 then

γ ≤ max
p1,p2,u≥0:
p1+p2+u≤1

{K1(p1, p2, u),K3(p1, p2, u)} ≤ θ − 1

θ + 1
. (3.6)

2) If z ≤ 1 then

γ ≤ max
p1,p2,u≥0:
p1+p2+u≤1

{K2(p1, p2, u),K4(p1, p2, u)} ≤ θ − 1

θ + 1
+ 1− z. (3.7)

Remark 3.2. The function K1(p1, p2, u) (K3(p1, p2, u)) reaches its maximum for u = 0, p1 =
p2 =

1
2 , i.e. if K1 ≤ f(θ, z) (K3 ≤ f(θ, z)), then f(θ, z) ≥ θ−1

θ+1 for z ≥ 1.

The following Proposition improves the part 2) of Proposition 1.
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Proposition 3.3. If z ≤ 1 then

γ ≤ max
p1,p2,u≥0:
p1+p2+u≤1

{K2(p1, p2, u),K4(p1, p2, u)} ≤
√

θ(θ − 1) + θz −
√
z√

θ(θ − 1) + θz +
√
z
. (3.8)

Proof. We shall find maximum values of functions K2(p1, p2, u) and K4(p1, p2, u). We consider

K2(p1, p2, u) =
θzp1

(θ − 1)zp1 + (1− z)u+ z
− zp1

(θ − 1)p2 + (1− z)u+ z
,

where p1, p2, u ≥ 0, p1 + p2 + u ≤ 1, z > 0, θ > 1. Let be p1 + p2 + u = α ≤ 1. Note that the
function K2(p1, p2, u) is an increasing function of p2. Then K2(p1, p2, u) ≤ K2(p1, p2+1−α, u).
Hence, it is sufficient to find the maximum of function K2(p1, p2, u) for α = 1.

K2(p1, p2, u) =
θp1

θp1 + z1u+ p2
− p1

[(θ − 1)z1 + 1]p2 + z1u+ p1
,

where z1 =
1
z , 0 < z ≤ 1. Let u

p1
= x, p2

p1
= y. Then

K2(p1, p2, u) =
θ

θ + z1x+ y
− 1

1 + z1x+ [(θ − 1)z1 + 1]y
.

Denote L(x, y) = θ
θ+z1x+y − 1

1+z1x+[(θ−1)z1+1]y . By inequalities (L(x, y))′x ≤ 0 (resp.(L(x, y))′x ≥
0) we obtain following inequalities

√
θ − (1 + (θ +

√
θ)z1)y ≤ z1x, (3.9)

(resp.
√
θ − (1 + (θ +

√
θ)z1)y ≥ z1x) (3.10)

If (x, y) satisfies (3.9) for some θ and z1, then

L(x, y) ≤ θ

θ + y
− 1

1 + (θ − 1)z1y + y
= f(y) ≤ maxL(0, y).

If (3.10) holds then from 0 ≤ y ≤
√
θ

1+(θ+
√
θ)z1

it follows that

L(x, y) ≤ L

(√
θ − (1 + (θ +

√
θ)z1)y

z1
, y

)
=

√
θ − 1

(
√
θ + 1)(1− z1y)

.

Denote g(y) =
√
θ−1

(
√
θ+1)(1−z1y)

. It is easy to check that g′(y) > 0 for θ > 1. Hence the function

g(y) is an increasing. Since y =
√
θ

1+(θ+
√
θ)z1

< 1
z1

we have

L

(√
θ − (1 + (θ +

√
θ)z1)y

z1
, y

)
≤ L

(
0,

√
θ

1 + (θ +
√
θ)z1

)
≤ maxL(0, y).

Consequently, L(x, y) ≤ maxL(0, y). We consider

L′(0, y) = − θ

(θ + y)2
+

(θ − 1)z1 + 1

(1 + [(θ − 1)z1 + 1]y)2
= 0 ⇔
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√
θ

θ + y
=

√
(θ − 1)z1 + 1

1 + [(θ − 1)z1 + 1]y
⇒ y =

√
θ√

(θ − 1)z1 + 1
.

Hence

maxL(0, y) = L

(
0,

√
θ√

(θ − 1)z1 + 1

)
=

√
θ(θ − 1)z1 + θ − 1√
θ(θ − 1)z1 + θ + 1

.

By z1 =
1
z we obtain

maxK2(p1, p2, u) =

√
θ(θ − 1) + θz −

√
z√

θ(θ − 1) + θz +
√
z
.

Analogously, we get

maxK4(p1, p2, u) =

√
θ(θ − 1) + θz −

√
z√

θ(θ − 1) + θz +
√
z
.

Remark 3.4. The function K2(p1, p2, u) (K4(p1, p2, u)) reaches its maximum for p1 + p2 =

1, p2
p1

=
√
θz

z+θ+
√
θ
, u = 0 (p1 + p2 = 1, p2

p1
=
√

θ
z(z+θ−1) , u = 0), i.e. if K2(p1, p2, u) ≤ f(θ, z)

(K4(p1, p2, u) ≤ f(θ, z)), then f(θ, z) ≥
√

θ(θ−1)+θz−
√
z√

θ(θ−1)+θz+
√
z
for z < 1.

Lemma 3.5. The following inequality holds√
θ(θ − 1) + θz −

√
z√

θ(θ − 1) + θz +
√
z
≤ θ − 1

θ + 1
+ 1− z (3.11)

for 0 < z ≤ 1, θ > 1.

Proof. Clearly, (3.11) is equivalent to

−2
√
z√

θ(θ − 1) + θz +
√
z
≤ θ − 1

θ + 1
− z.

If z ≤ θ−1
θ+1 , then the inequality is hold. Let z > θ−1

θ+1 . Then

2
√
z ≥

(
z − θ − 1

θ + 1

)
(
√

θ(θ − 1) + θz +
√
z).

From
√

θ(θ − 1) + θz < θ we get(
z − θ − 1

θ + 1

)
(
√

θ(θ − 1) + θz +
√
z) ≤ (θ + 1)z − (θ − 1).

We will prove (θ + 1)z − (θ − 1) ≤ 2
√
z. Indeed

θz − θ + z + 1 ≤ 2
√
z ⇔ (1−

√
z)2 ≤ θ(1−

√
z)(1 +

√
z).

As 1 −
√
z ≤ 1 +

√
z ≤ θ(1 +

√
z) for 0 < z ≤ 1 and θ > 1, the last inequality is hold. The

equality in (3.11) is only right for z = 1.

Theorem 3.6. [14] If k = 2, m = 1 then
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(a) There exists θ∗∗ > θc = q + 1 such that the measure µ1(θ, 1) is extreme for any θ ∈
[1 + 2

√
q − 1, θ∗∗), q ≥ 2.

(b) The measure µ2(θ, 1) is extreme for any θ ≥ 1 + 2
√
q − 1, q ≥ 2.

From [14] it is known that if θ > θc = q + 1 then z1 < 1.

Theorem 3.7. If m = 1, k = 2 then there exist θ̃ > θc = q+1 such that the measure µ1(θ, 1) is
extreme for any θ ∈ (1 + 2

√
q − 1, θ̃), q ≥ 2.

Proof. Let z1 < 1. In this case independently on q ≥ 2 we get c =
θ
√
z1−1

θz1+q−1 . Using z1 ≤ 1 (i.e.

θ ∈ [θc,+∞)) we get b ≥ c. Consequently, κ = b. Hence by Proposition 3.3 we should check

2γκ ≤ 2b

(√
θ(θ − 1) + θz1 −

√
z1√

θ(θ − 1) + θz1 +
√
z1

)
< 1, (3.12)

here b =
(θ−1)

√
z1

θz1+q−1 for m = 1 and z1 is a solution to z1 − (θ − 1)
√
z1 + q − 1 = 0. Denote

f(θ, q) =
2(θ − 1)

√
z1

θz1 + q − 1
·
√
θ(θ − 1) + θz1 −

√
z1√

θ(θ − 1) + θz1 +
√
z1

− 1.

It is easy to check

f(θc, q) =
θ − 1

θ + 1
− 1 < 0.

Since
√
z1 =

2(q − 1)

θ − 1 +
√

(θ − 1)2 − 4(q − 1)
,

we get
lim

θ→+∞
f(θ, q) > 0.

Hence there exist θ
′ ∈ (θc,+∞) such that f(θ

′
, q) = 0, θ̃ = min{θ′

: f(θ
′
, q) = 0}. Then

f(θ, q) < 0 for any θ ∈ [θc, θ̃). Consequently the measure µ1(θ, 1) is extreme for any θ ∈ [θc, θ̃).
For q = 3 (m = 1) a numerical analysis shows that θ∗− θ̃ = 6.243−5.079 = 1.164 (see Fig.1),

where θ∗ = 1 + (
√
2 + 1)q − 2m is the critical value of θ above of which the measure µ1(θ, 1) is

not extreme (see [14]).

Fig. 1. The graph of the function f(θ, q) for q = 3. The solution of f(θ̃, 3) = 0 is θ̃ ≈ 5.079.
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Remark 3.8. 1. In [14] for q = 3, z1 < 1 the measure µ1(θ, 1) was extreme for θ ∈ (4, θ∗∗) and
it was non-extreme for θ ∈ (θ∗, 2 + 3

√
2). The difference is θ∗ − θ∗∗ = 2.0149. In our case this

difference is equal to θ∗ − θ̃ = 1.1636, i.e. it was reduced the interval where it is not known the
extremality of the measure µ1(θ, 1).

Theorem 3.9. [14]

(i) If m = 2 then for each q = 4, 5, 6, 7, 8 there exists θ̆ > q + 1 such that the measure µ1(θ, 2)

is extreme for any θ ∈ [θ2, θ̆). Moreover, if q = 9, 10, 11, 12, 13 then there exists θ́ = θ́(q)

such that θ2 < θ́ < q + 1 and µ1(θ, 2) is extreme for θ ∈ [θ́, θ̆).

(ii) If m = 2 then for each q = 4, 5, 6, 7, 8 there exists θ̀ = θ̀(q) such that θ2 < θ̀ ≤ q + 1 and

µ2(θ, 2) is extreme for θ ∈ [θ2, θ̀) (see Fig.7).

(iii) If q < m+1
2m

[
3m+ 1 +

√
m2 + 6m+ 1

]
, m ≥ 2 then the measure µ1(θm,m) = µ2(θm,m) is

extreme.

The following theorem is the generalization of Theorem 3.9

Theorem 3.10. Let k = 2, m ≥ 2. Then
1. If 2m ≤ q < m+1

2m [3m + 1 +
√
m2 + 6m+ 1], then there exists θ̈ > q + 1 such that the

measure µ1(θ,m) is extreme for any θ ∈ [θm, θ̈);
2. If q > m+1

2m [3m+ 1 +
√
m2 + 6m+ 1], then there exists θ ∈ (θm, θc) such that the measure

µ1(θ,m) is extreme for any θ ∈ (θ, θ̈);

3. If 2m ≤ q < m + 1
4m(m + 1 +

√
m2 + 2m+ 7)2 = ζ(m), then there exists ¯̄θ ∈ (θm,+∞)

such that the measure µ2(θ,m) is extreme for any θ ∈ [θm, ¯̄θ).

Proof. 1. Denote m+1
2m [3m+1+

√
m2 + 6m+ 1] = α(m). We’ll check extremality for the measure

µ1(θ,m) with z1 ≥ 1. In this case θ ∈ [θm, θc]. Then it is easy to check that κ = a. Consequently

2κγ ≤ 2a
θ − 1

θ + 1
< 1.

Since
√
z1 =

2(q −m)

θ − 1 +
√
(θ − 1)2 − 4m(q −m)

,

we get
θ2 − (2m+ 4)θ − 2m+ 3− (θ − 3)

√
(θ − 1)2 − 4m(q −m) < 0.

Consequently

u(θ) = θ3 − (q + 3)θ2 + (8q − 10m− 1)θ − (9q − 8m− 12) > 0. (3.13)

We note that u(θm) > 0 for q < α(m). Moreover the function u(θ) increases in [θ
(1)
m ,+∞],

θ(1)m =
q + 3 +

√
(q + 3)2 − 3(8q − 10m− 1)

3
.

From
[ q
2

]
≥ m it follows that θ

(1)
m ≤ θm. Indeed,

q + 3 +
√

(q + 3)2 − 3(8q − 10m− 1)

3
≤ 1 + 2

√
m(q −m),

which is equivalent to

ξ(q) = 2q
√

m(q −m) + 5m+ 2− 3q − 6m(q −m) ≤ 0. (3.14)
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We compute the derivative

ξ′(q) = 2
√

m(q −m) +
mq√

m(q −m)
− 3− 6m.

For m ≤
[ q
2

]
and q < m+1

2m [3m+ 1+
√
m2 + 6m+ 1] the function ξ(q) is increasing. By the last

inequality we get

q <
2(m+ 1)2

m
≤ 2(m+ 3).

Hence ξ(q) < ξ(2(m+3)). For m ≥ 2 we can see easily ξ(2(m+3)) < 0 and θ
(1)
m ≤ θm. Thus the

function u(θ) increases on the segment [θm, θc], i.e. u(θ) > 0 for any θ ∈ [θm, θc]. Consequently
the measure µ1(θ,m) is extreme for z1 > 1 and θ ∈ [θm, θc].

Case: z1 < 1. In this case we have, independently on the values of q and m,

c =
1

Z1
(θ
√
z1 − 1) .

It is easy to see that b ≥ c for z1 < 1, i.e. for θ > θc. Consequently, κ = b and we should check

2κγ ≤
2(θ − 1)

√
z1

θz1 + q − 1
·
√

θ(θ − 1) + θz1 −
√
z1√

θ(θ − 1) + θz1 +
√
z1

< 1.

Denote

g(θ, q,m) =
2(θ − 1)

√
z1

θz1 + q − 1
·
√

θ(θ − 1) + θz1 −
√
z1√

θ(θ − 1) + θz1 +
√
z1

− 1.

From
√
z1 =

2(q −m)

θ − 1 +
√
(θ − 1)2 − 4m(q −m)

,

we have

g(θc, q,m) =
θ − 1

θ + 1
− 1 < 0, lim

θ→+∞
g(θ, q,m) > 0.

Hence there exists θ
′′ ∈ (θc,+∞) such that g(θ

′′
, q,m) = 0, θ̈ = min{θ′′

: g(θ
′′
, q,m) = 0}.

Then g(θ, q,m) < 0 for any θ ∈ [θc, θ̈), i.e. the measure µ1(θ,m) is extreme for this condition.
Note that for q = 6, m = 2 we have θ∗ = 3(1 + 2

√
2) ≈ 11.485 and a numerical analysis

shows that θ̈ ≈ 8.22 (see Fig.2). So θ∗ − θ̈ ≈ 3.265.

Fig. 2. The graph of the functions g(θ, q,m) for q = 6,m = 2. θ∗ − θ̈ ≈ 3.265.
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2. The case z1 ≥ 1. If q > m+1
2m [3m + 1 +

√
m2 + 6m+ 1]], then u(θm) < 0. We note

that u(θc) > 0. Moreover the function u(θ) increases for [θm, θc]. Hence there exists a unique
θ ∈ (θm, θc] such that u(θ) = 0. From the condition of extremality (3.13) we get the measure
µ1(θ,m) is extreme for (θ, θc).

The case z1 < 1 is similar to the proof of part 1 of the theorem. That’s why the measure
µ1(θ,m) is extreme for (θ, θ̈).

3. We have z2 ≥ 1 for θ ≥ θm. We check the condition of extremality of the measure µ2(θ,m)

2κγ ≤ 2c
θ − 1

θ + 1
< 1,

which is equivalent to

v(θ) = θ2 − (2m+ 4)θ − 2m+ 3 + (θ − 3)
√

(θ − 1)2 − 4m(q −m) < 0. (3.15)

The inequality (3.15) has a solution if the inequality

θ2 − (2m+ 4)θ − (2m− 3) < 0,

has a solution. The solution of the last inequality has following form

θ < m+ 2 +
√

m2 + 2m+ 7.

Since θ ≥ θm = 1 + 2
√

m(q −m) we obtain

1 + 2
√

m(q −m) < m+ 2 +
√

m2 + 2m+ 7.

Hence

2m ≤ q < m+
1

4m
(m+ 1 +

√
m2 + 2m+ 7)2.

For this condition it is easy to check that limθ→+∞ v(θ) = +∞ for this condition. Consequently

there exist ¯̄θ ∈ (θm,+∞) such that v(¯̄θ) = 0. So the measure µ2(θ,m) is extreme for θ ∈ (θm, ¯̄θ).

Remark 3.11. 1. If q > m + 1
4m(m + 1 +

√
m2 + 2m+ 7)2, then the condition of extremality

(3.15) does not satisfy for any θ, i.e. in this case it is not known the extremality of the measure
µ2(θ,m).

2. Using a graphs we can see that derivatives f ′(θ, q) > 0, g′(θ, q,m) > 0 for finite q and m
(see Fig 3.), i.e. functions f(θ, q) and g(θ, q,m) are increasing (by analytical method the proof
of this statement is very difficult). So values θ

′
, θ

′′
are uniquely determined by θ̃ = θ

′
, θ̈ = θ

′′
.

Fig. 3. The graph of the functions f ′(θ, q) for q = 5,m = 1 (on the left). The graph of the functions

g′(θ, q,m) > 0 for q = 8,m = 3 (on the right).
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[8] Häggström O 1996 Probab. Theory and Relat. Fields 104 231–253
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[13] Külske C, Rozikov U A and Khakimov R M Jour. Stat. Phys. 156(1) 189–200
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