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Abstract. In this paper, we provide the classes of Poisson and Geometric quadratic stochastic
operators with countable state space, study the dynamics of these operators and discuss their
application to economics.

1. Introduction
Let (X,F) be a measurable space, S(X,F) be the set of all probability measures on (X,F), and
{P (x, y,A) : x, y ∈ X,A ∈ F} be a family of functions on X ×X ×F that satisfy the following
conditions:

(i) P (x, y, ·) ∈ S(X,F), for any fixed x, y ∈ X;

(ii) P (x, y,A) regarded as a function of two variables x and y with fixed A ∈ F is measurable
function on (X ×X,F ⊗ F);

(iii) P (x, y,A) = P (y, x,A) for any x, y ∈ X,A ∈ F .

We consider a nonlinear transformation (quadratic stochastic operator) V : S(X,F) → S(X,F)
defined by

(V λ)(A) =

∫
X

∫
X
P (x, y,A)dλ(x)dλ(x), (1)

where λ ∈ S(X,F) is an arbitrary initial probability measure and A ∈ F is an arbitrary
measurable set.
Note that the third condition P (x, y,A) = P (y, x,A) is not overloaded, since otherwise one can
determine a new function

Q(x, y,A) =
P (x, y,A) + P (y, x,A)

2

with preserving quadratic stochastic operator (qso) V, i.e.

(V λ)(A) =

∫
X

∫
X
P (x, y,A)dλ(x)dλ(x) =

∫
X

∫
X
Q(x, y,A)dλ(x)dλ(x).

Definition 1.1 An element µ ∈ S(X,F) is called a fixed point of a qso V if V µ = µ.
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Let {V nλ : n = 0, 1, 2, · · ·} be the trajectory of the initial point λ ∈ S(X,F), where
V n+1λ = V (V nλ) for all n = 0, 1, 2, · · · .
In measure theory, there are various notions of the convergence of measures: weak convergence,
strong convergence, total variation convergence. Below we consider strong convergence.

Definition 1.2 For (X,F) a measurable space, a sequence {µn} is said to converge strongly to
a limit µ if

lim
n→∞

µn(A) = µ(A)

for every set A ∈ F .

Definition 1.3 A qso V is called regular if for any initial point µ ∈ S(X,F) the strong limit

lim
n→∞

V n(µ)

exists.

If a state space X = {1, 2, · · · ,m} is finite and the corresponding σ-algebra is the power set
P(X), i.e. the set of all subsets of X, then the set of all probability measures on (X,P(X))
coincides with

Sm−1 = {x = (x1, x2, · · · , xm) ∈ Rm : xi ≥ 0 for any i, and
m∑
i=1

xi = 1} (2)

and corresponding qso V has the following form

(V x)k =
m∑

i,j=1

Pij,kxixj , (3)

where Pij,k ≡ P (i, j, {k}).
Such operators can be reinterpreted in terms of evolutionary operator of free population,
evolutionary games and a gene conversion and in those forms it has a fair history. Note that
the theory of qso on finite state space is well developed. The detailed exposure of the theory
of quadratic stochastic operators is presented in [1]-[2], [4]-[5], [11-30]. In [6]-[10], [20] it was
studied qso defined on countable and continual state spaces.

In statistical mechanics the ergodic hypothesis proposes a connection between dynamics and
statistics. In the classical theory the assumption was made that the average time spent in
any region of phase space is proportional to the volume of the region in terms of the invariant
measure, more generally, that time averages may be replaced by space averages. For nonlinear
dynamical systems Ulam [29] suggested as analogue of measure-theoretic ergodicity, following
ergodic hypothesis:

Definition 1.4 A nonlinear operator V defined on S(X,F) is called ergodic, if the limit

lim
n→∞

1

n

n−1∑
k=0

V kλ

exists for any λ ∈ S(X,F).
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On the basis of numerical calculations for quadratic stochastic operators defined on S(X,F)
with finite X, Ulam conjectured [28] that the ergodic theorem holds for any such qso V. In 1977
Zakharevich [29] proved that this conjecture is false in general. He considered following operator
on S2

x′1 = x21 + 2x1x2,

x′2 = x22 + 2x2x3

x′3 = x23 + 2x1x3

and proved that it is non-ergodic transformation. Later in [13] it was established sufficient
condition to be non-ergodic transformation for qso defined on S2 and in [5] described non-
ergodic qso defined on S3 and S4. In next sections we will show that Ulam’s conjecture is true
for some classes of qso defined on infinite state space.

2. Countable State Space
In this section we consider non-linear transformations defined on countable state space and
investigate their trajectory behavior. Let X = {0, 1, · · ·} be a countable sample space and
corresponding σ-algebra F be the power set P(X). Remind that to define a probability measure
µ on countable sample space X it is enough to define the measure µ({k}) of each singleton
{k}, k = 0, 1, · · · . Below we will write µ(k) instead of µ({k}). For countable state space X a qso
(1) has the following form:

V µ(k) =
∞∑
i=0

∞∑
j=0

Pij,kµ(i)µ(j) (4)

where µ ∈ S(X,F), Pij,k ≡ P (j, i, k), and k ∈ X.

2.1. Poisson QSO
Remind that a Poisson distribution Pλ with a positive real parameter λ is defined on X by the
equation

Pλ(k) = e−λλ
k

k!
, k ∈ X

Definition 2.1 A quadratic stochastic operator V (4) is called a Poisson qso if for any i, j ∈ X,
the probability measure P (i, j, ·) is the Poisson distribution Pλ(i,j) with positive real parameter
λ(i, j).
We select the following class of a Poisson qso.

Definition 2.2 A qso V is called m-Poisson, where m is a positive integer, if {λ(i, j) : i, j ∈
X} = {λ0, λ1, · · · , λm−1}.

One can define m-Poisson qso as follows. Assume that for any i, j ∈ X, with i+ j ≡ s(mod m)
we have λ(i, j) = λs, and

Pij,k = e−λs
λk
s

k!
(5)

for any k ∈ X with k ≡ s(mod m), where s = 0, 1, · · · ,m − 1. Then corresponding qso V is a
m-Poisson qso.
For any initial measure µ ∈ S(X,F) let

As(µ) =
∞∑
n=0

µ(mn+ s),
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where s = 0, 1, · · · ,m− 1. It is easy to compute As(Pλ) for the Poisson distribution Pλ. Let

Bq(Pλ) =
∞∑
n=0

λnm+q

(nm+ q)!

with q = 0, 1, · · · ,m − 1, where
∑m−1

q=0 Bq(Pλ) = eλ and As(Pλ) = e−λBs(Pλ). Let us consider

the equation νm = 1 with roots νq = cos 2πq
m + i sin 2πq

m , where q = 0, 1, · · · ,m− 1. Then

eνqλ = ecos
2πq
m

(
cos

(
λ sin

2πq

m

)
+ i sin

(
λ sin

2πq

m

))
and

eνqλ =
m−1∑
s=0

νsqBs(Pλ),

where q = 0, 1, · · · ,m− 1.
For any initial measure µ ∈ S(X,F) we have

V µ(k) =
∞∑
i=0

∞∑
j=0

Pij,kµ(i)µ(j)

=
m−1∑
s=0

e−λs
λk
s

k!

 m−1∑
p+q≡s(mod m)

Ap(µ)Aq(µ)


and

V 2µ(k) =
∞∑
i=0

∞∑
j=0

Pij,kV µ(i)V µ(j)

=
m−1∑
s=0

e−λs
λk
s

k!

 m−1∑
p+q≡s(mod m)

Ap(V µ)Aq(V µ)


By simple calculations we have

At(V µ) =
m−1∑
s=0

At(Pλs)

 m−1∑
p+q≡s(mod m)

Ap(µ)Aq(µ)

 (6)

Thus by induction for the sequence V n(µ) we produce the following recurrent equation

V n+1µ(k) =
m−1∑
s=0

e−λs
λk
s

k!

 m−1∑
p+q≡s(mod m)

Ap(V
nµ)Aq(V

nµ)

 (7)

where n = 0, 1, · · · , and for parameters At(V
nµ), t = 0, 1, · · · ,m − 1 we have the following

recurrent equations

At(V
n+1µ) =

m−1∑
s=0

At(Pλs)

 m−1∑
p+q≡s(mod m)

Ap(V
nµ)Aq(V

nµ)

 (8)
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Let us put xp = Ap(V
nµ), where p = 0, 1, · · · ,m−1. It is evident that (x0, x1, · · · , xm−1) ∈ Sm−1,

such that the equations (8) one can rewrite as

x′t =
m−1∑
s=0

At(Pλs)

 m−1∑
p+q≡s(mod m)

xpxq

 , (9)

where t = 0, 1, · · · ,m − 1. Then these system of equations (9) is a qso on finite dimensional
simplex Sm−1 which is denoted by W1. It is evident that if W1 is a regular transformation, then
from (7) it follows that the limit limn→∞ V n+1µ(k) exists for any k ∈ X. Thus the problem
of investigating limit behaviour of the trajectory qso (4) is reduced to similar problem for qso
defined on finite dimensional simplex. In next subsection we consider Geometric qso.

2.2. Geometric qso
A Geometric distribution Gα with a real parameter α, 0 < α < 1, is defined on countable set
X by the equation

Gα(k) = α(1− α)k, k ∈ X.

Definition 2.3 A quadratic stochastic operator V (4) is called a Geometric qso if for any
i, j ∈ X, the probability measure P (i, j, ·) is the Geometric distribution with parameter α(i, j).
We select the following class of a Geometric qso.

Definition 2.4 A qso V is called m-Geometric, where m is a positive integer, if {α(i, j) : i, j ∈
X} = {α0, α1, · · · , αm−1}.
One can define m-Geometric qso as follows. Assume that for any i, j ∈ X, with i+j ≡ s(mod m)
we have α(i, j) = αs, and

Pij,k = αs(1− αs)
k

for any k ∈ X, where s = 0, 1, · · · ,m− 1. Then the corresponding qso V is a m-Geometric one.
As above one can produce the following recurrent equations

V n+1µ(k) =
m−1∑
s=0

αs(1− αs)
k

 m−1∑
p+q≡s(mod m)

Ap(V
nµ)Aq(V

nµ)

 (10)

where n = 0, 1, · · · , and for parameters At(V
nµ), t = 0, 1, · · · ,m − 1 we have the following

recurrent equations

At(V
n+1µ) =

m−1∑
s=0

At(Gαs)

 m−1∑
p+q≡s(mod m)

Ap(V
nµ)Aq(V

nµ)

 , (11)

where

At(Gαs) = αs
(1− αs)

t

1− (1− αs)m
.

Now we assume xp = Ap(V
nµ), where p = 0, 1, · · · ,m− 1. Then (x0, x1, · · · , xm−1) ∈ Sm−1, and

the equations (8) can be rewritten as

x′t =
m−1∑
s=0

At(Gαs)

 m−1∑
p+q≡s(mod m)

xpxq

 , (12)

where t = 0, 1, · · · ,m− 1. These system of equations (11) is a qso on finite dimensional simplex
Sm−1 which is denoted by W2. It is evident that if W2 is regular, then from (10) one finds that
the limit limn→∞ V n+1µ(k) exists for any k ∈ X.

In next Section 3 we show the regularity of W1 and W2.
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3. Regularity of quadratic stochastic operators W1 and W2

First we recall a construction of qso [30]. Let G be a finite commutative group and S(G) be a
set of all probability measures on G. It is evident, that if |G| = m, then S(G) coincides with
Sm−1.

Let further H ⊂ G be a subgroup of G and {g + H : g ∈ G} be the cosets of H in G.
Assume µ ∈ S(G) is a fixed positive measure, that is µ(g) > 0 for any g ∈ G. Then we define
the coefficients pfg,h, where f, g, h ∈ G in the following way:

pfg,h =


µ(h)

µ(f+g+H) if h ∈ f + g +H;

0 otherwise,

where pfg,h = pgf,h, pfg,h > 0 for any f, g, h and
∑

h∈G pfg,h = 1. It is evident that if H = {e},
where e is the neutral element of group G, then

pfg,h =

{
1 if h = f + g;
0 otherwise

and corresponding qso V is defined as

(V x)h =
∑

f,g∈G,f+g=h

xfxg. (13)

In [31] the authors studied qso (13) and proved the following statement.

Theorem 3.1 Almost all orbits of the qso V tend to the center of the simplex.

Below we apply this construction to investigate the operators W1 and W2, respectively.
Let G = Zm and Q be a qso defined on S(Zm) by the trivial subgroup. Namely, the qso Q

is defined as follows:
(Qx)k =

∑
i,j∈Zm:i+j≡k(modm)

xixj , (14)

It is evident that any heredity coefficient pij,k of the operator Q is equal to either 0 or 1.

Let Π = ||pij ||m−1
i,j=0 be a right stochastic matrix with each row summing to 1, and W = ΠQ

be a composition of the operators Q and Π, i.e.

(Wx)k =
m−1∑
i=0

pki(Qx)i, (15)

where Qx andWx are column vectors. One can see thatW is also a qso such that, for any fixed k
its heredity coefficient satisfies Pij,k ∈ {pk0, pk1, · · · , pk,m−1}. Note that the quadratic stochastic

operators (9) and (12) have the form (15) with right stochastic matrix Π = ||pij ||m−1
i,j=0, where

pki = Ak(Gλi
) and pki = Ak(Gαi), respectively, for all i, j = 0, 1, · · · ,m− 1.

In [18] and [19] the authors proved that if all heredity coefficients of qso are positive, and
pi1k,j
pi1k,j

≤ µ < 3, then the qso has a single fixed point, and all trajectories converge to this fixed

point.
It is evident that for any Geometric distribution Gα we have A0(Gα) > A1(Gα) > A2(Gα) >

· · · > Am−1(Gα) and
A0(Gα)

Am−1(Gα)
< 3 if α < 1− 1

m√3
. Thus we have the following statement.

Theorem 3.2 Let V be an m−Geometric qso with parameters α0, α1, · · · , αm−1. If
α0, α1, · · · , αm−1 < 1− 1

m√3
, then V is a regular qso.
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As shown above for any Poisson distribution Pλ one can compute explicitly
A0(Pλ), A1(Pλ), · · · , Am−1(Pλ) for any positive integerm. Then one can show that there exists λ∗

such that Ai(Pλ)
Aj(Pλ)

< 3 for any λ > λ∗. For example, if m = 2 we have A0(Pλ) =
1+e−2λ

2 , A1(Pλ) =

1−e−2λ

2 and A0(Pλ)
A1(Pλ)

< 3 if λ > ln 2
2 , i.e. λ∗ = ln 2

2 . Hence, we have the following statement.

Theorem 3.3 Let V be an m−Poisson qso with parameters λ0, λ1, · · · , λm−1. If λ0, λ1, · · · , λm−1 >
λ∗, then V is a regular qso.

Remark 3.4 In [19] Lyubich conjectured that any qso V with positive heredity coefficients has
a unique or at least finitely many fixed points. By numerical analysis for small m ([6]-[9]) we
have checked uniqueness of fixed point for the considered qso. Therefore, for any m, one can
expect that m−Geometric and m−Geometric qso’s have unique fixed points.

4. Applications
In this section we consider an application to economics of qso with infinite state space, using
a model introduced by Föllmer [3]. He considered a countably set A of economic agents (as in
physical examples the number of agents considered is often quite large, and therefore, it was
considered an infinite case to approximate such situations), each being in a state s specified
by his preferences and resources. He then allowed an interaction between different agents in
the following manner. First, the environment e of the economic agent a is a configuration on
A − a which specifies the states of the other agents. The collection of local (microeconomic)
characteristics of the form ra(s|e) can then be given as the conditional probability that a is
in state s given the environment e. Then any probability measure µ which possesses the local
characteristics is given by r called a global phase of the economy.

A price is then defined as a vector p = (p1, · · · , pk). Then, based on some maximization scheme
using the agent’s preferences, a well-defined individual excess demand ζ(ω(a), p) is determined.
The individual’s excess demand is to be thought of as the difference between his demand and
what he already has. The price p is said to stabilize the global phase µ of the economy E if

lim
1

|An|
∑
a∈An

ζ(ω(a), p) = 0, (16)

whenever An is an increasing sequence of finite subsets of A which exhausts A. Equation (16) is
interpreted as having the per capita excess demand going to 0. Föllmer [3] showed that for the
Ising model, if there are two pure phases then there is no price which makes (16) true. In [4]
the authors proposed a construction of quadratic stochastic operator Vµ using Gibbs state µ of
some lattice model. Applying this construction for Föllmer model one can define qso on infinite
state space, namely countable infinite set A of economic agents and investigate ergodicity of this
qso. The question then consideredas follows: is there any correlation between ergodicity of the
qso and stabilization the price (16)?

Theorem 4.1 If for the Ising model there are two pure phases µ∗ and µ∗∗ then corresponding
qso Vµ∗ and Vµ∗∗ are non ergodic transformation.

The Sketch of the Proof Let {µn} be a sequence of conditional Gibbs measures that converges
to pure phase µ. Using the construction suggested in [4] one can define the sequence of qso
{Vµn} defined on finite state space and show that for T < Tc (see [4]) qso Vµn is non ergodic
transformation. By the standard calculus arguments, one can prove that there exists limit of
the sequence qso {Vµn} and limit transformation is non ergodic qso. Thus if for the Ising model
occurs the phase transition, then there is no price which makes (16) true and respectively the
corresponding qso is non ergodic transformation.
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