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Abstract. A double stochastic operator is a generalization of a double stochastic matrix.
In this paper, we study the dynamics of double stochastic operators. We give a criterion for
a regularity of a double stochastic operator in terms of absences of its periodic points. We
provide some examples to insure that, in general, a trajectory of a double stochastic operator
may converge to any interior point of the simplex.

1. Introduction
A notion of a double stochastic operator (in short DSO) was firstly introduced in the paper [7]
as a generalization of a double stochastic matrix in a class of nonlinear operators. For reasons
of self-exposition, it is convenient to provide some necessary notations and notions in the theory
of majorization (for a detail, see [1, 2, 13]).
m
Let ||x||1 = > |xk| be a norm of a vector x = (z1,- - ,xy) € R™. We say that x > 0 (resp.
k=1
x > 0) if 2, > 0 (resp. xp, > 0) for all k = T,m. Let S™ 1 = {x €e R™: ||x|; = 1, x > 0}
be the (m — 1)—dimensional standard simplex. An element of the simplex S™~! is called
a stochastic vector. Recall that a square matrix P = (pij):‘);‘ﬂ is called stochastic if every
row is a stochastic vector. A square matrix P = (pij)?szl is said to be double stochastic if
every row and column are stochastic vectors. For a given vector x = (x1,--+ ,x,) € R™, let
Ty = 2 Ty denote the components of x in a non-increasing order and x| = (;13[1], e ,:U[m]).
WesetRl":{:reRm:acl > > X}
We say that x is majorized by y written x < y if

k

k m m
dorg <)y, Yh=Tm=T > apy=>) yy
i=1 i=1 =1

i=1
The following results are the classical results in the theory of majorization [13].
Theorem 1.1. Let x,y € R™ be vectors. The following statements are equivalent:
(i) The vector x is majorized by y, i.e., X < y;
(ii) One has Dy = x for some double stochastic matriz D;

(iii) The vector x is in the convex hull of the m! permutations of y.
(iv) One has > ¢(x;) <> é(yi) for all convex continuous functions ¢;
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We shall interchangeably use three equivalent statements (i) — (ii¢) throughout this paper.
A set of all m! permutations of z and its convex hull are denoted, respectively, by Per;,(x) and
Conv(Pery,(x)). Due to Theorem 1.1, the conditions (i) and (i) are equivalent. Therefore, we
can give an equivalent definition of a double stochastic matrix which is convenient in nonlinear
settings: a matrix D is said to be double stochastic if one has that Dx < x for any x € R™.
Any mapping V : §™~1 — §™m~1is called a stochastic operator.

Definition 1.2 ([7]). A stochastic operator V : S™~1 — 8™~ is said to be double stochastic if
one has that V(x) < x for any x € S™1L.

Proposition 1.3. Let V : 8™ 1 — S§m=1 be q stochastic operator. Then the following
statements are equivalent:

(i) V is a double stochastic operator;
(i) One has that V(Conv(Pery(x))) C Conv(Perpy(x)) for any x € S™ L,

Proof. Tt follows from Theorem 1.1 that one has that x < y if and only if Conv(Per,,(x)) C
Conv(Per,(y)). Consequently, one has that V(x) < x for any x € S™ ! if and only if
V (Conv(Per,i(x))) C Conv(Pery(x)) for any x € ™1, O

Sometimes, the following geometric definition of a DSO is very useful in a practice.

Definition 1.4. A stochastic operator V : S™~1 — §™1 is said to be double stochastic if one
has that V (Conv(Per,(x))) C Conv(Per,(x)) for any x € S™1.

Throughout this paper, we shall consider a continuous DSO without mentioning ” continuity”.
m

A cubic matrix P = (pijk);; -, is called stochastic if 3 pijx =1, pijr > 0, Vi, j, k= 1,m.
1 k:l
Every cubic stochastic matrix is associated with a quadratic stochastic operator V : §™~1 —
S™m=1 as follows

(V(X))k = Z TiXjPijks Vk= 1,m. (1.1)
1,5=1

A Birkhoff theorem states that a set of extreme points of a set of double stochastic matrices
coincides with a set of all permutations matrices. One of the main purposes of studying DSO
was to solve Birkhoff’s problem in a class of quadratic double stochastic operators. However,
Birkhoff’s problem remains open in the class of quadratic double stochastic operators [9, 10].

By being the simplest nonlinear mapping, a quadratic stochastic operator has an incredible
application in population genetics[3, 5, 6, 11, 12], control systems [23, 24]. In population genetics,
the quadratic stochastic operator describes a distribution of the next generation of the system
if the current distribution is given [12, 26]. In this sense, the quadratic stochastic operator is a
primary source for investigations of evolution of population genetics. The detailed exposure of
the theory of quadratic stochastic operators is presented in [8, 10],[14]-[22].

Let Fix(V) = {x € ™! : V(x) = x} be a fixed point set. Due to Brouwer’s theorem,
Fix(V) # (. In this paper, we study the dynamics of double stochastic operators. We give a
criterion for a regularity of a double stochastic operator in terms of absences of its periodic points.
This answers Problem 2.35 mentioned in the survey paper [8]. We provide some examples to
insure that, in general, a trajectory of a double stochastic operator may converge to any interior
point of the simplex.
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2. Examples for Double Stochastic Operators
Let S! be 1D simplex, e; = (1,0) and ez = (0,1) be vertexes of the simplex S'. Let
[a,b] = {(1 — A)a + Ab}o<r<1 be a closed line segment connecting points a,b € S!. For any
a = (a1;az) € S* we set a’ = (ag;a;1) € S'. Let us fix a point a, = (aJ;a3) € S' where a§ < as.
Throughout this paper, for any mapping V, we denote by V"=V o...0V .

—_———

n

Example 2.1. We define an operator Vg1 : S — St as follows:

T+ ao
5 if € le2,a0]
Vo@={z i a€andl].
x+al
9 Zf T e [agael]

It is clear that for any x € S* one has that Vg1 (x) € [z,2']. This means that Vg is a continuous
DSO and Fix(Vg1) = [ac, al]. Moreover, we get that

T — ao ,
o +ao if x € les, a0
Vel'(z) = S @ if x € [ac,al].
T —al

on +al if x€ladl,el]

Therefore, V' (x) = ao if © € [ea, a0 and VT (x) — af if x € [a, e1].
This example shows that the trajectory of DSO may converge to any interior point of S!.

Example 2.2. We define an operator We1 : S* — S as follows:

'+ al,
5 if € le2,a0]
Wai(x) =< o if x€ [as,al].
' 4 a,
2 Zf T e [a/ov 61]

It is clear that for any x € S one has that Wqi (x) € [z, 2]. This means that Wg1 is a continuous
DSO. The set of periodic-2 points of Wg1 is [ao, al]. Moreover, we have that

o —al,
a1 T %o if € le2,a0]
Wl (@) = { o if =€ lasdl],
' —a ,
2T+10+a° if x € [al,ei]
T —a
Tno +ao if x € [es,ao]
ngn) (r)=<q=x if € lao,al] .
/
T —a
Tno‘f‘ a, if x € [ag,e]

This yields that the trajectory of Wg1 converges to periodic-2 points, i.e., w(x(o)) = {ao,al}
whenever (0 € [ez, a0] U [al, e1].
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We see that a trajectory of a DSO might converge to its periodic points.
Now, we shall provide an example for a DSO in which the center of the simplex S! is its
isolated fixed point. To do so, we are going to study the dynamics of the following function

Jao + [a7, a3] — [af, a3]
[e] 1 o
fuol) = (@ =) (2= 3 ) (2 —a§) 4. (21)
where a, = (af;a3) € S and af < a3.

Proposition 2.3. Let f,, : [a3,aS] — [a3,aS] be a function given by (2.1). Then the following
statements hold true:

(i) The function f,, is increasing;
(ii) One has that Fiz(fa,) = {a$, 3,a3};
(iii) If x € [a3, 1] then fo,(z) > and if x € [§,a3] then fa,(z) < x;
(iv) One has that wy, (zo) = {1} for any o € (a$,a3).
The proof of the proposition is straightforward.
Example 2.4. We define an operator Zg1 : S* — S' as follows:

T+ a. |
5 if x € [es,ao]
Zgi(x) = Fo,(z) if x€las,al],
x+al
2 Zf S [a'{:wel]

where Fy, (z) = (fao(z1),1 — fa,(x1)), @ function fo. is defined by (2.1), and v = (z1,x2) €
[ac,al] C S'. This operator is continuous. We want to show that it is a DSO. Thanks
to Proposition 2.3 (iii), one has that F, (x) € [z,2'] for any x € [ao,al]. This yields that
Zgi(z) € [x,2'] for any x € S'. Due to Definition 1.4, the operator Zg is a DSO. Moreover,
we have that Fiz (Zg1) = {ac, a,,c}, where c = (%,1) is the center of the simplex S'. One can
easily see that

ot as if x€lenal

on ao if x € lea, a0

Z3 (x) = Fo™(x) if x € ao,al],
T —al

Lvd, i we (el

where Fy™(x) = (fo™(x1),1 — fo"(x1)) . Consequently, we have that
{ao} if 2 € [eq, ac]

w (x(o)) =<c{c} if 20 € (aal).
{as} if 2 €lal e

In all examples, operators were defined on S'. However, we can get similar pictures in the
higher dimensional simplex.

Let S~ ! be an (m — 1)—dimensional simplex, ej,-- - , e, be vertexes of the simplex S™ !
and ¢ = (%, ,%) be a center of the simplex S™~ !, where e; = [ 0,---,0, 1 ,0,---,0
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Similarly, we define [a,b] as a closed line segment connecting points a,b € S™71, ie., [a,b] =

{(1 = A)a+ Ab}o<r<i-

Let us fix an interior point a, = (a$,---,aS,) € intS™ L. Let Per,(as) be a set of all
permutation of a, and Conv(Per,,i(as)) be a convex hull of Per,,(as). Let 0(Conv(Per,(as)))
be a boundary of the set Conv(Perpi(as)). One can easily check that for any point z €
Sm=1N\ Conv(Per,,(as)) the set [z,c] N d(Conv(Perp(as))) is a singleton. We denote it by

¥, ie., " = [z,¢] N O(Conv(Permpi(as))).

Example 2.5. We define an operator Vgm-1 : S™~1 — 8™~ as follows:

T4+t _—
Vgm-1(z) = 5 if xeS™\ Conv(Pery(ao)) ‘

z if x € Conv(Perp(as))

This operator is continuous. Let us show that Vgm—1 is a DSO. Since x,x*, and %
belong to Conv(Per,,(x)), one has that Vgm-1(Conv(Per, (z))) C Conv(Pery,(x)) for any
x € S™ L. Due to Definition 1.4, the operator Vgm-1 is a DSO. Moreover, we have that
Fiz(Vgm-1) = Conv(Perpy(as)).

One can easily check that for any x € S™ 1\ Conv(Pery(as)) one has that Vgm-1([z,c]) C
[z,c] and (Vgm—1(x))" = x*, where c is the center of the simplex. Therefore, we get that

x—a*
* ; m—1
Ven_ (z) = on T if xe€ S™ "\ Conv(Perp(as)) '

T if x € Conv(Pery(as))

Consequently, VS_,(x) — x* for any x € S™ 1\ Conv(Perp(as)).

This examples shows that any interior point of the simplex S™ ! might be a limiting point
of a trajectory of some DSO defined on S™ 1.

Let us give an example for a DSO defined on the simplex S™~! in which its omega limiting
set is not a singleton.

Example 2.6. We define an operator Wgm-1 : S™ 1 — S 1 a5 Wom—1(z) = Vgm-1(Poz) for
any x € S™ 1, where P, is some permutation matriz and Vem-1 is a DSO defined in Example
2.5.

One can easily see that Py o Vgm-1 = Vgm-1 0 P,. In fact, we have for any x € S™ 1\
Conv(Permy(as)) that

= Vem-1(Ps(2)).

* P, Pox* P, Pox)*
PO(VSm—1(m)):PO<x—;m>: ac—; L :13-1-2( )

Therefore, we get that Wi _, (z) = PS"(Vr_(x)) for any x € S™ 1.
It follows from Example 2.5 that

Fiz(Vgm-1) = Conv(Perp(ac)), wvy, ,(z) ={z"}
for any x € S™ 1\ Conv(Pery(as)). Consequently, we have that
Pery(Wgm-1) = Conv(Perp(as)),  ww,,, ,(z) = {Poig*}k |

for any x € S™1\ Conv(Per,(as)), where P* = 1T and 1 is an identity matriz.
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Example 2.7. The following quadratic operator V : S?> — S? was studied in the paper [25]

(V(z))1 = z129 + 2123 + m?,)
Vi< (V(z))2 = 23 + 1179 + m273
(V(x))3 = z372 + 22 + 7173.

Let I(x) = (z1,z2,23) (x) = (23,22, 21) be the identity and permutation operators. It is clear
that, one has for any x € S? that

V(z) = xol(x) + (1 + x3)(x). (2.2)

This means that V (x) € Conv(Pers(x)) for any x € S%, i.e., V is a double stochastic operator.
Due to (2.2), if x1 = x3 then I(z) = (x) and V(x) = xol(z) + (1 + x3)[(z) = I(x) = x, if
w9 = 0 then V(z) = (1 + x3)(z) = II(x). Therefore, T'13 = {x € S? : 21 = a3} is a fived point
set and Ty = {x € S? : 13 = 0} is a periodic-2 point set.

Theorem 4 of the papfr [25] says that if (0 € §2\ I'y then the trajectory {Vo(z(O)} en

converges to the center (3, % g) of the simplex S%. However, this is obviously wrong because of
(0)

(:c("))2 = (VO"( (0 ))) 2 f or any n € N.

Since x(n) = l‘g ) and ‘ g ) :173n+1 ’ = ‘23350)

(0) (0)
1—2x o 1—x
wv(w(o)):{<22 ,mg),722 )}
for any (© € §2\ Ty.

These examples show that, in general, a trajectory of DSO may converge to any interior point
of the simplex. In the next section, we provide a criterion for a regularity of a double stochastic
operator in terms of absences of its periodic points. This answers Problem 2.35 mentioned in the
survey paper [8]. Some concrete examples to Problem 2.35 are also given in the papers [23, 24].

— 1‘ ‘mgn) — :L‘én)‘ for any n € N, we have that

3. Regularity of Double Stochastic Operators

Let (X,d) be a compact convex manifold and V' : X — X be a continuous operator. Let
{zM}22 o where () = V(z(»=1D) = Vor(z(0) (0 € X, be a trajectory of V starting from
an initial point z(9). An operator V is called regular if its trajectory {a:(”) o converges for all
0 e X (a limiting point might be depended on an initial point). It is clear that if V' is regular
then V' does not have any order periodic points except fixed points. One of the fascinating
results in 1D dynamical system is that if X = [a,b] then V is reqular if and only if it does not
have any order periodic points except fixed points (see [4]). It is natural to seek an analogy of
this incredible result in the higher dimensional case. However, in general, this result does not
hold true in the higher dimensional case. In the paper [20], it was shown that, in the class of
Volterra-QSO, absences of periodic points do not imply a regularity of Volterra-QSO. It turns
out that, in the class of DSO, the regularity of DSO can be described in terms of absences of
periodic points of DSO.

Theorem 3.1. Let V : S™ 1 — S™~ 1 be ¢ DSO. Then V is regular if and only if it does not

have any order periodic points except fixed points.

Proof. Let V : §™~1 — §™=1 be a DSO. It is clear that if V is regular then it does not have
any order periodic points except fixed points. Let us prove the ”if” part of the theorem.
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The ”if” part. Suppose that V does not have any order periodic points except fixed
points. Let {z(")}ﬁozo be a trajectory of V starting from any initial point z(®) € S™~1. Since
V:§m=l 5 §m=lis a DSO, we have that

k
Sa (”“><Zx(” Vk=T,m—1, (3.1)
=1

m

meﬂ = Zlmfg) =1. (3.2)

k oo
It follows from (3.1) that {Z a:g]?’)} is a bounded decreasing sequence (therefore it is
=1 0

convergent) for every k = 1,m — 1.

Consequently, it follows from :U Z a: Z x ) and (3.2) that a sequence {I[k] 1o
is convergent for any k = 1,m. This means that the sequence xin) = (x[(ﬁ),xgﬁ), e ,Jff:l)])
converges to some point x* = (z7,--- ,x},) whenever n — oo.

Let w (1:(0)) be an omega limiting set of the trajectory {x(")}ffzo and z° € w ($(0)) be any
point. Then there is a sub-sequence {z(")}2 = of the sequence {z(™}  such that x(") — 2°
whenever k — oo. Since a down arrow mapping |: R™ — RT, where | (z) = x|, is continuous,

we get that xi"’“) — a9 whenever k — co. On the other hand, we know that xin) — x* whenever

n — o0o. Therefore, we have that 2] = z*. This means that there is a permutation matrix P such
that z° = Pz*. As a conclusion, we may say that any omega limiting point is some permutation
of z*. It means that w (:c(o)) is a finite set, i.e., w( ) = {P;z*}]_, for some permutation

matrices P, where i = 1,r.

Since the simplex S™~! is compact and V is continuous, we obtain that V (w (1‘(0) =
w (x(o)) and every omega limiting point is a periodic point of (minimum) period |w (w(o)) |. We
know that V' does not have any order periodic points except fixed points, therefore, we get that
w (@) | =1 for any 2(®) € S™~1. This means that V is regular. O

If a DSO is regular then a limiting point of its trajectory is a fixed point. The structure of
the fixed point set can be arbitrary. The fixed point set can be finite as well as infinite (see
examples section). It is clear that the center ¢ = (%, cee %) of the simplex ™! is always the
fixed point of any DSO. In fact, one has that ¢ < V(¢) < ¢. This means that V(¢) = Pc for some
permutation matrix P. On the other hand, Pc = ¢ for any permutation matrix P. Therefore,
V(c) = c. Suppose that the center ¢ of the simplex is the isolated fixed point, i.e., there is a
neighborhood U, of the point ¢ such that U, does not contain any periodic and fixed points of
DSO except c. We then have the following result.

Proposition 3.2. Let V : St — §m~1 be a DSO. If the center of the simplex is the isolated
fized point then it is locally attracting.

Proof. Let V : ™1 — §™~1 he a DSO and the center ¢ = (%, e ,m) of the simplex be its
isolated fixed point. This means that, without loss of any generality, there is a convex symmetric
neighborhood U, of ¢ (a set is symmetric if it is invariant under any permutation matrix) such
that U. does not contain any periodic and fixed points of DSO except ¢. Due to Definition 1.4,
we have that V' (U.) C U.. Moreover, since the set U. does not contain any periodic points of
DSO, due to Theorem 3.1, V is regular in U.. We know that the only fixed point in the set U, is
the center of the simplex, therefore, any trajectory of V starting from any point in U, converges

to the center of the simplex. It means that the center of the simplex is locally attracting. O
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Therefore, the dynamics of DSO are diverse. It is worth pointing out that a convergence
criterion and several properties of Schur decreasing sequences were studied in [10] while a
trajectory of DSO is but an example for Schur decreasing sequences.
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