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Abstract. We knew that a trajectory of a linear stochastic operator associated with a positive
square stochastic matrix starting from any initial point from the simplex converges to a unique
fixed point. However, in general, the similar result for a quadratic stochastic operator associated
with a positive cubic stochastic matrix does not hold true. In this paper, we provide an
example for the quadratic stochastic operator with positive coefficients in which its trajectory
may converge to different fixed points depending on initial points.

1. Introduction

Let ∥x∥1 =
m∑
k=1

|xk| be a norm of a vector x = (x1, · · · , xm) ∈ Rm. We say that x ≥ 0 (resp.

x > 0) if xk ≥ 0 (resp. xk > 0) for all k = 1,m. Let Sm−1 = {x ∈ Rm : ∥x∥1 = 1, x ≥ 0} be the
(m − 1)−dimensional standard simplex. An element of the simplex Sm−1 is called a stochastic
vector. Recall that a square matrix P = (pij)

m
i,j=1 is called stochastic if every row is a stochastic

vector. A square stochastic matrix P = (pij)
m
i,j=1 is called positive if pij > 0, ∀ i, j = 1,m.

The classical Perron-Frobenius theorem states that any positive square stochastic matrix has a
unique fixed point in the simplex. However, in general, the similar result for higher dimensional
hyper-matrices (tensors) does not hold true. In this paper, we discuss this problem for cubic
stochastic matrices.

A cubic matrix P = (pijk)
m
i,j,k=1 is called stochastic if

m∑
k=1

pijk = 1, pijk ≥ 0, ∀i, j, k = 1,m.

Every cubic stochastic matrix is associated with a quadratic stochastic operator Q : Sm−1 →
Sm−1 as follows

(Q(x))k =
m∑

i,j=1

xixjpijk, ∀ k = 1,m. (1.1)

By being the simplest nonlinear mapping, a quadratic stochastic operator has an incredible
application in population genetics [1, 2, 3, 6, 8], control systems [18, 19]. In population genetics,
the quadratic stochastic operator describes a distribution of the next generation of the system
if the current distribution is given [8, 21]. In this sense, the quadratic stochastic operator is a
primary source for investigations of evolution of population genetics. The detailed exposure of
the theory of quadratic stochastic operators is presented in [4, 5],[10]-[17].
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A cubic stochastic matrix P = (pijk)
m
i,j,k=1 is said to be positive (written P > 0) if

pijk > 0, ∀i, j, k = 1,m. A quadratic stochastic operator associated with a positive cubic
stochastic matrix is called positive. Let Fix(Q) = {x ∈ Sm−1 : Q(x) = x} be a fixed point set.
Due to Brouwer’s theorem, Fix(Q) ̸= ∅. Meanwhile, a fixed point of the quadratic operator
is an equilibrium for the system. In contrast to the linear case, the fixed point set of the
quadratic operator is sophisticated. In general, if P > 0 then it is not necessary to be true that
|Fix(Q)| = 1. The first attempt to give an example for such kind of quadratic operators was
done by A. A. Krapivin [7] and Yu. I. Lyubich [8]. However, it turns out that their examples
are wrong. In fact, we shall show that Krapivin’s example as well as Lyubich’s example has a
unique fixed point in the simplex. At the same time, we shall also provide an example for the
quadratic operator associated with the positive cubic stochastic matrix which has three fixed
points in the simplex.

2. Krapivin’s Example
A. A. Krapivin has considered the following quadratic operator Vε : S2 → S2, Vε(x) = x′ =
(x′1, x

′
2, x

′
3) in his paper [7]

Vε :


x′
1 = (1− 4ε)x2

1 + 2εx2
2 + 10εx2

3 + 4εx1x2 + (1 + 4ε)x1x3 + 8εx2x3

x′
2 = 2εx2

1 + (1− 3ε)x2
2 + εx2

3 + ( 12 + 2ε)x1x2 + 2εx1x3 + (1 + 8ε)x2x3

x′
3 = 2εx2

1 + εx2
2 + (1− 11ε)x2

3 + ( 32 − 6ε)x1x2 + (1− 6ε)x1x3 + (1− 16ε)x2x3

A.A. Krapivin claimed [7] that the quadratic operator Vε : S2 → S2 has two fixed points on

the line segment L =

{(
t

2
,
1− t

2
,
1

2

)}
0≤t≤1

where 0 < ε < 1
100 . However, this claim is wrong.

Proposition 2.1. The quadratic operator Vε does not have any fixed point on L.

Proof. We search for a fixed point x0 = ( t2 ,
1−t
2 , 12) on the line segment L. We should have that

Vε(x0) = x0. After some algebraic calculations, we obtain the following system of equations
(1− 6ε)t2 − (1 + 4ε)t+ 20ε = 0

(1− 6ε)t2 − (1− 4ε)t+ 12ε = 0

(1− 6ε)t2 −
(
1 + 4

3ε
)
t+ 52

3 ε = 0

. (2.1)

If we take a difference of the first two equations of the system (2.1) we then get that 8εt = 8ε or
t = 1. However, if we substitute t = 1 into the third equation in the system (2.1) we then have
that 10ε = 0 which contradicts to the condition 0 < ε < 1

100 . Therefore, the system (2.1) does
not have any solution. This completes the proof.

Now, we are aiming to prove that |Fix(Vε)| = 1.
It is clear that Vε(S2) ⊂ intS2 = {x ∈ S2 : x1x2x3 > 0}. Hence, Fix(Vε) ⊂ intS2.
In order to find all fixed points, we have to solve the system of equations

x1 = (1− 4ε)x21 + 2εx22 + 10εx23 + 4εx1x2 + (1 + 4ε)x1x3 + 8εx2x3

x2 = 2εx21 + (1− 3ε)x22 + εx23 + (12 + 2ε)x1x2 + 2εx1x3 + (1 + 8ε)x2x3

x3 = 2εx21 + εx22 + (1− 11ε)x23 + (32 − 6ε)x1x2 + (1− 6ε)x1x3 + (1− 16ε)x2x3

Proposition 2.2. One has that ξ1 ̸= η1, ξ2 ̸= η2, ξ3 ̸= η3 for ξ, η ∈ Fix(Vε) and ξ ̸= η.
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Proof. Let ξ, η be two distinct solutions of the system given above (if any). Since x3 = 1−x1−x2,
we can rewrite the system in terms of x1 and x2 as follows{

2εx21 + 4εx22 + (12ε− 1)x1x2 − 16εx1 − 12εx2 + 10ε = 0

εx21 − 10εx22 − (12 + 6ε)x1x2 + 6εx2 + ε = 0
(2.2)

Case ξ1 ̸= η1 Our aim is to show that ξ1 ̸= η1. We suppose the contrary that is ξ1 = η1. Since
ξ ̸= η, we must have that ξ2 ̸= η2. This means that for x1 = ξ1 = η1, the following two
quadratic equations (with respect to x2)

4εx22 + ((12ε− 1)ξ1 − 12ε)x2 + (2ξ21 − 16ξ1 + 10)ε = 0,

− 10εx22 +

[
−
(
1

2
+ 6ε

)
ξ1 + 6ε

]
x2 + (ξ21 + 1)ε = 0

must have two distinct common roots ξ2 and η2. Consequently, we should have that

4ε

−10ε
=

(12ε− 1)ξ1 − 12ε

−
(
1

2
+ 6ε

)
ξ1 + 6ε

=
2ξ21 − 16ξ1 + 10

ξ21 + 1
.

It follows from the first equality that ξ1 = 8ε
8ε−1 . Since 0 < ε < 1

100 , we get that ξ1 < 0
which is a contradiction.

Case ξ2 ̸= η2 Our aim is to show that ξ2 ̸= η2. We again suppose the contrary that is ξ2 = η2.
Since ξ ̸= η, we must have that ξ1 ̸= η1. It follows from (2.2) that for x2 = ξ2 = η2, the
following two quadratic equations (with respect to x1)

2εx21 + ((12ε− 1)ξ2 − 16ε)x1 + (4ξ22 − 12ξ2 + 10)ε = 0,

εx21 −
(
1

2
+ 6ε

)
ξ2x1 + (−10ξ22 + 6ξ2 + 1)ε = 0

must have two distinct common roots ξ1 and η1. Consequently, we should have that

2ε

ε
=

(12ε− 1)ξ2 − 16ε

−
(
1

2
+ 6ε

)
ξ2

=
4ξ22 − 12ξ2 + 10

−10ξ22 + 6ξ2 + 1
.

It follows from the first equality that ξ2 =
2
3 . By substituting ξ2 =

2
3 into the last fraction,

we get that
4ξ22−12ξ2+10

−10ξ22+6ξ2+1
= 34

5 ̸= 2 = 2ε
ε . This is again contradiction.

Case ξ3 ̸= η3 Our aim is to show that ξ3 ̸= η3. We again suppose the contrary that is ξ3 = η3.
Since ξ ̸= η, we must have that ξ1 ̸= η1. In this case, we can rewrite the system of equations
in terms of x1 and x3 as follows{

(1− 6ε)x21 + 4εx23 + (1− 4ε)x1x3 − x1 + 4εx3 + 2ε = 0

(9ε− 3
2)x

2
1 + 6εx23 + (18ε− 3

2)x1x3 + (32 − 8ε)x1 − 18εx3 + ε = 0
.

This yields that for x3 = ξ3 = η3, the following two quadratic equations (with respect to
x1)

(1− 6ε)x21 + ((1− 4ε)ξ3 − 1)x1 + (4ξ23 + 4ξ3 + 2)ε = 0,

(9ε− 3

2
)x21 + [(18ε− 3

2
)ξ3 + (

3

2
− 8ε)]x1 + (6ξ23 − 18ξ3 + 1)ε = 0
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must have two distinct common roots ξ1 and η1. Consequently, we should have that

1− 6ε

9ε− 3
2

=
(1− 4ε)ξ3 − 1

(18ε− 3
2)ξ3 +

3
2 − 8ε

=
4ξ23 + 4ξ3 + 2

6ξ23 − 18ξ3 + 1
.

It follows from the first equality that ξ3 = 2
3 . By substituting ξ3 = 2

3 into the last fraction,

we get that
4ξ23+4ξ3+2

6ξ23−18ξ3+1
= −58

75 ̸= −2
3 = 1−6ε

9ε− 3
2

. This is again contradiction.

This completes the proof.

Theorem 2.3. Let Vε : S2 → S2 be the quadratic operator given above. Then for sufficiently

small ε, one has that Fix(Vε) =
{(

3a20−3a0+1
2−3a0

, a0,
1−2a0
2−3a0

)}
where a0 is the unique positive root

in
(
0, 12

)
of the following quartic equation

(9− 54ε)a4 + (132ε− 15)a3 + (9− 68ε)a2 − (12ε+ 2)a+ 10ε = 0.

Proof. Since x3 = 1− x1 − x2, it is enough to find all solutions (x1, x2) of the following system
of equations {

2εx21 + 4εx22 + (12ε− 1)x1x2 − 16εx1 − 12εx2 + 10ε = 0

εx21 − 10εx22 − (12 + 6ε)x1x2 + 6εx2 + ε = 0
(2.3)

which satisfy the conditions 0 < x1, x2 < 1 and 0 < x1 + x2 < 1.
Let x1 = x be a variable and x2 = a be a parameter. Then the system (2.3) takes the

following form

x2 +
(12ε− 1)a− 16ε

2ε
x+ (2a2 − 6a+ 5) = 0, (2.4)

x2 +
a(−1− 12ε)

2ε
x+ (−10a2 + 6a+ 1) = 0. (2.5)

Due to Proposition 2.2, these two quadratic equations cannot have two common roots. Hence,
the system (2.3) has a solution (x1, x2) with 0 < x1, x2 < 1, 0 < x1 + x2 < 1 if and only if two
quadratic equations (2.4) and (2.5) must have a unique common root in (0, 1) for a ∈ (0, 1). We
know (see [20]) that two quadratic equations (2.4) and (2.5) have a unique common root if and
only if their resultant is equal to zero, i.e.,

(9− 54ε)a4 + (132ε− 15)a3 + (9− 68ε)a2 + (−12ε− 2)a+ 10ε = 0. (2.6)

In this case, x = 3a2−3a+1
2−3a is the unique common root of two quadratic equations (2.4) and (2.5).

In order to have conditions 0 < x1, x2 < 1, 0 < x1 + x2 < 1, we have to solve the following
system of inequalities 

0 < 3a2−3a+1
2−3a < 1

0 < a < 1

0 < a+ 3a2−3a+1
2−3a < 1.

(2.7)

The solution of the system (2.7) is a ∈ (0, 12). Therefore, the total number of solutions (x1, x2),
0 < x1, x2 < 1, 0 < x1 + x2 < 1 of the system (2.3) is the same as the total number of roots
of the quartic equation (2.6) in the interval (0, 12). Moreover, there is one-to-one correspondence
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between a root a0 ∈ (0, 12) of the quartic equation (2.6) and a fixed point
(
3a20−3a0+1

2−3a0
, a0,

1−2a0
2−3a0

)
of the quadratic operator Vε : S2 → S2 .

Now, we want to show that the quartic equation (2.6) has a unique root in the interval (0, 12)
for sufficiently small ε. To do so, we have to apply the Sturm theorem for the quartic equation
(2.6) in (0, 12) (see [20]).

Let p(a) = (9 − 54ε)a4 + (132ε − 15)a3 + (9 − 68ε)a2 + (−12ε − 2)a + 10ε be a quartic
polynomial. Let {p0(a), p1(a), p2(a), p3(a), p4(a)} be a Sturm sequence of the quartic polynomial
p(a). Let σ(ξ) be the number of sign changes (ignoring zero terms) in the sequence
p0(ξ), p1(ξ), p2(ξ), p3(ξ), p4(ξ). Then due to the Sturm theorem, the number of roots of the
quartic polynomial p(x) in the interval (0, 12) is equal to σ(0)− σ(12). Simple calculations show
that for sufficiently small ε, one has that

p0(0) = 10ε > 0, p0(
1

2
) = − 1

16
+

1

8
ε < 0,

p1(0) = −(12ε+ 2) < 0, p1(
1

2
) =

1

4
− 8ε > 0,

p2(0) ≃ − 5

24(6ε− 1)
> 0, p2(

1

2
) ≃ − 13

6ε− 1
> 0,

p3(0) ≃
9

(3− 344ε)2
> 0, p3(

1

2
) ≃ 9

(3− 344ε)2
> 0,

p4(0) ≃
3

6ε− 1
< 0, p4(

1

2
) ≃ 3

6ε− 1
< 0.

Therefore, we get that σ(0) − σ(12) = 3 − 2 = 1. Consequently, this means that the quartic

equation (2.6) has a unique root a0 in the interval (0, 12), or equivalently, the quadratic operator

Vε : S2 → S2 has a unique fixed point
(
3a20−3a0+1

2−3a0
, a0,

1−2a0
2−3a0

)
in the simplex S2. This completes

the proof.

3. Lyubich’s Example
Yu. I. Lyubich has considered (see [8], page 296) the following quadratic operator Wε : S2 → S2,
Wε(x) = x′ = (x′1, x

′
2, x

′
3)

Wε :


x′
1 = (1− 4ε)x2

1 + 2εx2
2 + 10εx2

3 + 4εx1x2 + (1 + 4ε)x1x3 + 8εx2x3

x′
2 = 2εx2

1 + (1− 3ε)x2
2 + εx2

3 + ( 12 + 2ε)x1x2 + 2εx1x3 + (1− 12ε)x2x3

x′
3 = 2εx2

1 + εx2
2 + (1− 11ε)x2

3 + ( 32 − 6ε)x1x2 + (1− 6ε)x1x3 + (1 + 4ε)x2x3

where 0 < ε < 1
12 . In commentaries and references section, Yu.I. Lyubich wrote that the

quadratic operator Wε : S2 → S2 was constructed by A.A. Krapivin in [7]. However, Krapivin’s
example Vε : S2 → S2 considered in the previous section is slightly different from the quadratic

operator Wε : S2 → S2 given in Lyubich’s book [8]. Yu. I. Lyubich claimed that if 0 < ε < 9−5
√
2

124
then the quadratic operator Wε : S2 → S2 has three fixed points in the simplex S2. However,
this is wrong. Namely, the quadratic operator Wε has a unique fixed point for any 0 < ε < 1

12 .
For the sake of argument, we shall present its proof by repeating the same method used in
Krapivin’s example.

It is clear that Wε(S2) ⊂ intS2. Hence, Fix(Wε) ⊂ intS2.
In order to find all fixed points, we have to solve the system of equations

x1 = (1− 4ε)x21 + 2εx22 + 10εx23 + 4εx1x2 + (1 + 4ε)x1x3 + 8εx2x3

x2 = 2εx21 + (1− 3ε)x22 + εx23 + (12 + 2ε)x1x2 + 2εx1x3 + (1− 12ε)x2x3

x3 = 2εx21 + εx22 + (1− 11ε)x23 + (32 − 6ε)x1x2 + (1− 6ε)x1x3 + (1 + 4ε)x2x3
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Proposition 3.1. One has that ξ1 ̸= η1, ξ2 ̸= η2, ξ3 ̸= η3 for ξ, η ∈ Fix(Wε) and ξ ̸= η.

Proof. Let ξ, η be two distinct solutions of the system given above (if any). Since x3 = 1−x1−x2,
we can rewrite the system of equations in terms of x1 and x2 as{

2εx21 + 4εx22 + (12ε− 1)x1x2 − 16εx1 − 12εx2 + 10ε = 0

εx21 + 10εx22 + (14ε− 1
2)x1x2 − 14εx2 + ε = 0

(3.1)

Case ξ1 ̸= η1 Our aim is to show that ξ1 ̸= η1. We suppose the contrary that is ξ1 = η1. Since
ξ ̸= η, we must have that ξ2 ̸= η2. This means that for x1 = ξ1 = η1, the following two
quadratic equations (with respect to x2)

4εx22 + ((12ε− 1)ξ1 − 12ε)x2 + (2ξ21 − 16ξ1 + 10)ε = 0,

10εx22 + ((14ε− 1

2
)ξ1 − 14ε)x2 + (ξ21 + 1)ε = 0

must have two distinct common roots ξ2 and η2. Consequently, we should have that

4ε

10ε
=

(12ε− 1)ξ1 − 12ε

(14ε− 1
2)ξ1 − 14ε

=
2ξ21 − 16ξ1 + 10

ξ21 + 1
.

It follows from the first equality that ξ1 =
8ε

8ε−1 . Since 0 < ε < 1
12 , we get that ξ1 < 0 which

is a contradiction.

Case ξ2 ̸= η2 Our aim is to show that ξ2 ̸= η2. We again suppose the contrary that is ξ2 = η2.
Since ξ ̸= η, we must have that ξ1 ̸= η1. It follows from (3.1) that for x2 = ξ2 = η2, the
following two quadratic equations (with respect to x1)

2εx21 + ((12ε− 1)ξ2 − 16ε)x1 + (4ξ22 − 12ξ2 + 10)ε = 0,

εx21 + (14ε− 1

2
)ξ2x1 + (10ξ22 − 14ξ2 + 1)ε = 0

must have two distinct common roots ξ1 and η1. Consequently, we should have that

2ε

ε
=

(12ε− 1)ξ2 − 16ε

(14ε− 1
2)ξ2

=
4ξ22 − 12ξ2 + 10

10ξ22 − 14ξ2 + 1
.

It follows from the first equality that ξ2 = −1 which is a contradiction.

Case ξ3 ̸= η3 Our aim is to show that ξ3 ̸= η3. We again suppose the contrary that is ξ3 = η3.
Since ξ ̸= η, we must have that ξ1 ̸= η1. In this case, we can rewrite the system of equations
in terms of x1 and x3 as follows{

(1− 6ε)x21 + 4εx23 + (1− 4ε)x1x3 − x1 + 4εx3 + 2ε = 0

(9ε− 3
2)x

2
1 − 14εx23 − (32 + 2ε)x1x3 + (32 − 8ε)x1 + 2εx3 + ε = 0

This yields that for x3 = ξ3 = η3, the following two quadratic equations (with respect to
x1)

(1− 6ε)x21 + ((1− 4ε)ξ3 − 1)x1 + (4ξ23 + 4ξ3 + 2)ε = 0,

(9ε− 3

2
)x21 + [−(

3

2
+ 2ε)ξ3 + (

3

2
− 8ε)]x1 + [−14ξ23 + 2ξ3 + 1]ε = 0

must have two distinct common roots ξ1 and η1. Consequently, we should have that

1− 6ε

9ε− 3
2

=
(1− 4ε)ξ3 − 1

−(32 + 2ε)ξ3 +
3
2 − 8ε

=
4ξ23 + 4ξ3 + 2

−14ξ23 + 2ξ3 + 1
.

It follows from the first equality that ξ3 = −1 which is a contradiction.
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This completes the proof

Theorem 3.2. Let Wε : S2 → S2 be the quadratic operator given above. Then for any

0 < ε < 1
12 , one has that Fix(Wε) =

{(
1+2a0(1−a0)

2(1+a0)
, a0,

1−2a0
2(1+a0)

)}
where a0 is the unique

positive root in (0, 12) of the following quartic equation

(2− 12ε)a4 + 16εa3 + (16ε− 3)a2 − (16ε+ 1)a+ 5ε = 0.

Proof. Since x3 = 1− x1 − x2, it is enough to find all solutions (x1, x2) of the following system
of equations {

2εx21 + 4εx22 + (12ε− 1)x1x2 − 16εx1 − 12εx2 + 10ε = 0

εx21 + 10εx22 + (14ε− 1
2)x1x2 − 14εx2 + ε = 0

(3.2)

which satisfy the conditions 0 < x1, x2 < 1 and 0 < x1 + x2 < 1.
Let x1 = x be a variable and x2 = a be a parameter. Then the system (3.2) takes the

following form

x2 +
(12ε− 1)a− 16ε

2ε
x+ (2a2 − 6a+ 5) = 0, (3.3)

x2 +
a(14ε− 1

2)

ε
x+ (10a2 − 14a+ 1) = 0. (3.4)

Due to Proposition 3.1, these two quadratic equations cannot have two common roots. Hence,
the system (3.2) has a solution (x1, x2) with 0 < x1, x2 < 1, 0 < x1 + x2 < 1 if and only if two
quadratic equations (3.3) and (3.4) must have a unique common root in (0, 1) for a ∈ (0, 1). We
know (see [20]) that two quadratic equations (3.3) and (3.4) have a unique common root if and
only if their resultant is equal to zero, i.e.,

(2− 12ε)a4 + 16εa3 + (16ε− 3)a2 − (16ε+ 1)a+ 5ε = 0. (3.5)

In this case, x = 1+2a(1−a)
2(1+a) is the unique common root of two quadratic equations (3.3) and

(3.4). In order to have conditions 0 < x1, x2 < 1, 0 < x1+x2 < 1, we have to solve the following
system of inequalities 

0 < 1+2a(1−a)
2(1+a) < 1

0 < a < 1

0 < a+ 1+2a(1−a)
2(1+a) < 1.

(3.6)

The solution of the system (3.6) is a ∈ (0, 12). Therefore, the total number of solutions (x1, x2),
0 < x1, x2 < 1, 0 < x1 + x2 < 1 of the system (3.2) is the same as the total number
of roots of the quartic equation (3.5) in the interval (0, 12). Moreover, there is one-to-one

correspondence between a root a0 ∈ (0, 12) of the quartic equation (3.5) and a fixed point(
1+2a0(1−a0)

2(1+a0)
, a0,

1−2a0
2(1+a0)

)
of the quadratic operator Wε : S2 → S2.

We are aiming to study the number of positive roots of the quartic equation (3.5) in the
interval (0, 12). Let f(a) = (2− 12ε)a4+16εa3+(16ε− 3)a2− (16ε+1)a+5ε. Since 0 < ε < 1

12 ,
it is easy to check that

f(0) = 5ε > 0, f

(
1

2

)
=

18ε− 9

8
< 0, f(2) = 18− 27ε > 0.
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This means that the quartic equation (3.5) has at least two positive roots. On the other hand,
due to Descartes’s theorem, the number of positive roots cannot be more than the number of
sign changes between consecutive nonzero coefficients 2− 12ε, 16ε, 16ε− 3, −(16ε+ 1), 5ε of
the quartic equation (3.5) which is two.

Therefore, the quartic equation (3.5) has exactly two positive roots in which one of them
belongs to (0, 12) and another one belongs to (12 , 2). Hence, for any 0 < ε < 1

12 , there exists

a unique positive root a0 of the quartic equation (3.5) in the interval (0, 12). Consequently, for

any 0 < ε < 1
12 , the quadratic operator Wε has a unique fixed point

(
1+2a0(1−a0)

2(1+a0)
, a0,

1−2a0
2(1+a0)

)
.

This completes the proof

4. Positive Quadratic Stochastic Operator Having Three Fixed Points
In this section, we provide an example for a quadratic operator with positive coefficients having
three fixed points in the simplex S2.

Let A(0.1, 0.2, 0.7), B(0.4, 0.3, 0.3) and C(0.59, 0.31, 0.1) be points in the simplex. We define
a positive quadratic operator Q0 : S2 → S2, Q0(x) = x′ = (x′1, x

′
2, x

′
3) as follows

Q0 :


x′1 =

232873
319300x

2
1 +

4717
10300x

2
2 +

207
63860x

2
3 +

7
5x1x2 +

3
5x1x3 +

1
50x2x3

x′2 =
27
100x

2
1 +

1
2x

2
2 +

3
20x

2
3 +

470171
814300x1x2 +

378421
407150x1x3 +

158157
814300x2x3

x′3 =
54

79825x
2
1 +

433
10300x

2
2 +

27037
31930x

2
3 +

18409
814300x1x2 +

191589
407150x1x3 +

1454157
814300 x2x3

.

The straightforward calculation shows that A,B,C are fixed points of the quadratic operator
Q0 : S2 → S2.

We can define another positive quadratic operator Q1 : S2 → S2, Q1(x) = x′ = (x′1, x
′
2, x

′
3)

as follows

Q1 :


x′1 =

17322871
22351000x

2
1 +

990257
2163000x

2
2 +

1559
13410600x

2
3 +

13
10x1x2 +

16
25x1x3 +

11
500x2x3

x′2 =
224
1000x

2
1 +

488
1000x

2
2 +

125
1000x

2
3 +

703327
1017875x1x2 +

19461451
24429000x1x3 +

8271787
24429000x2x3

x′3 =
4301

4470200x
2
1 +

117199
2163000x

2
2 +

2933179
3352650x

2
3 +

18371
2035750x1x2 +

13761989
24429000x1x3 +

1601951
977160 x2x3

The straightforward calculation shows that A,B,C are also fixed points of the quadratic
operator Q1 : S2 → S2.

In addition, if Q : S2 → S2 is a positive quadratic stochastic operator on 2D simplex then
|Fix(Q)| = 1 or 3 (see [8]). Therefore, the quadratic operators Q0 and Q1 have exactly three
fixed points; A,B and C.

Now, we can define a family of positive quadratic operators Qε : S2 → S2 as Qε(x) =
(1−ε)Q0(x)+εQ1(x) for any x ∈ S2 and 0 ≤ ε ≤ 1. It is clear that A,B,C are also fixed points
of the family of positive quadratic operators Qε : S2 → S2.

In the paper [9], it was conjectures that if the set of stationary vectors of a second-order
Markov chain contains k−interior points of the (k − 1)−dimensional face of the simplex then
every vector in the (k − 1)−dimensional face is a stationary vector.

However, this conjecture is wrong. The family of quadratic stochastic operators Qε : S2 → S2
defined above are counterexamples to this conjecture.
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