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Abstract. In the present paper, we consider a class of quadratic stochastic operators (q.s.o.)
called b-bistochastic q.s.o. We study several descriptive properties of b- bistochastic q.s.o. It
turns out that, upper triangular stochastic matrix defines a linear b-stochastic operator. This
allowed us to find some sufficient conditions on cubic stochastic matrix to be a b−bistochastic
q.s.o.

1. Introduction
The history of quadratic stochastic operators (q.s.o.) can be traced back to Bernstein’s work [1]
where such kind of operators appeared from the problems of population genetics (see also [7]).
Such kind of operators describe time evolution of variety species in biology are represented by so-
called Lotka-Volterra(LV) systems [20]. Nowadays, scientists are interested in these operators,
since they have a lot of applications especially in modelings in many different fields such as
biology [5, 15], physics [17, 19], economics and mathematics [7, 15, 19].

Let us recall how q.s.o. appears in biology. The time evolution of species in biology can
be comprehended by the following situation. Let I = {1, 2, . . . , n} be the n type of species (or

traits) in a population and we denote x(0) = (x
(0)
1 , . . . , x

(0)
n ) to be the probability distribution

of the species in an early state of that population. By Pij,k we denote the probability of an
individual in the ith species and jth species to cross-fertilize and produce an individual from kth

species (trait). Given x(0) = (x
(0)
1 , . . . , x

(0)
n ), we can find the probability distribution of the first

generation, x(1) = (x
(1)
1 , . . . , x

(1)
n ) by using a total probability, i.e.

x
(1)
k =

n∑
i,j=1

Pij,kx
(0)
i x

(0)
j , k ∈ {1, . . . , n}.

This relation defines an operator which is denoted by V and it is called quadratic stochastic
operator (q.s.o.). In other words, each q.s.o. describes the sequence of generations in terms of
probabilities distribution, if the values of Pij,k and the distribution of the current generation are
given. The main problem in the nonlinear operator theory is to study the behavior of nonlinear
operators. Presently, there is only a small number of studies on dynamical phenomena on higher
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dimensional systems, even though they are very important (see for example, [6, 11, 12, 13, 18]).
In case of q.s.o., the difficulty of the problem depends on the given cubic matrix (Pijk)

m
i,j,k=1. In

[3, 10], it has given along self-contained exposition of the recent achievements and open problems
in the theory of the q.s.o.

In [16] a new majorization was introduced, and it opened a path for the study to generalize
the theory of majorization by Hardy, Littlewood and Polya [4]. The new majorization has an
advantage as compared to the classical one, since it can be defined as a partial order on sequences.
While the classical one is not an antisymmetric order (because any sequence is majorized by
any2 of its permutations), it is only defined as a preorder on sequence [16]. Most of the works in
the mentioned paper were devoted to the investigation of majorized linear operators (see [4, 16].
Therefore, it is natural to study nonlinear majorized operators.

In what follows, to differentiate between the terms majorization and classical majorization
that was popularized by Hardy et al.[4], we call majorization as b−order (which is denoted as
≤b) while classical majorization as majorization (which is denoted as ≺) only. In [2] it was
introduced and studied q.s.o. with a property V (x) ≺ x for all x ∈ Sn−1. Such an operator
is called bistochastic. In [9], it was proposed to a definition of bistochastic q.s.o. in terms of
b- order. Namely, a q.s.o. is called b−bistochastic if V (x) ≤b x for all x taken from the n − 1-
dimensional simplex. In this paper we continue our previous investigations on b-bistochastic
operators. We study several descriptive properties of b- bistochastic q.s.o. It turns out that,
upper triangular stochastic matrix defines a linear b-stochastic operator. This allowed us to find
some sufficient conditions on cubic stochastic matrix to be a b−bistochastic q.s.o.

2. Preliminaries
In this section we recall necessary definitions and facts about b-bistochastic operators.
Throughout this paper we consider the simplex

Sn−1 =

{
x = (x1, x2, ..., xn) ∈ Rn |xi ≥ 0,

n∑
i=1

xi = 1

}
. (2.1)

For each k ∈ {1, . . . , n− 1} we define functional Uk : Rn → R by

Uk(x1, . . . , xn) =
k∑

i=1

xi. (2.2)

Let x,y ∈ Sn−1. We say that x is b-ordered or b-majorized by y (x ≤b y) if and only if
Uk(x) ≤ Uk(y), for all k ∈ {1, . . . , n− 1}.

The introduced relation is partial order i.e. it satisfies the following conditions:

(i) For any x ∈ Sn−1 one has x ≤b x,

(ii) If x ≤b y and y ≤b x then x = y,

(iii) If x ≤b y, and y ≤b z then x ≤b z.

Using the defined order, one can define the classical majorization [8]. First, recall that for
any x = (x1, x2, . . . , xn) ∈ Sn−1, by x[↓] = (x[1], x[2], . . . , x[n]) one denotes the rearrangement of

x in non-increasing order, i.e. x[1] ≥ x[2] ≥ · · · ≥ x[n]. Take x,y ∈ Sn−1, then it is said that an

element x is majorized by y and denoted x ≺ y if x[↓] ≤b y[↓]. We refer the reader to [8] for
more information regarding to this topic.

Recall that any operator V with V (Sn−1) ⊂ Sn−1 is called stochastic.

Definition 2.1. A stochastic operator V is called b−bistochastic if one has V (x) ≤b x for all
x ∈ Sn−1.
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Note that, the simplest nonlinear operators are quadratic ones. Therefore, we restrict
ourselves to such kind of operators. Namely, a stochastic operator V : Sn−1 → Sn−1 is called
quadratic stochastic operator (q.s.o.) if V has the following form:

V (x)k =
n∑

i,j=1

Pij,kxixj , k = 1, 2, . . . , n, x = (x1, x2, . . . , xn) ∈ Sn−1, (2.3)

where {Pij,k} are the heredity coefficients with the following properties:

Pij,k ≥ 0, Pij,k = Pji,k,
n∑

k=1

Pij,k = 1, i, j, k = 1, 2, . . . , n . (2.4)

Remark 2.2. If a q.s.o. V satisfies V (x) ≺ x for all x ∈ Sn−1, then it is called bistochastic
[2]. In our definition, we are taking b−order instead of the majorization. Note that if one takes
absolute continuity instead of the b−order, then b−bistochastic operator reduces to Volterra q.s.o.
[14].

Let V be a q.s.o., then one can define an associated matrix Tn(x) = [Tik(x)]
n
i,k=1, x ∈ Sn−1

by

Tik(x) =

n∑
j=1

Pij,kxj , x = (xi) ∈ Sn−1, (2.5)

where {Pij,k} are the heredity coefficients. One can see that Tn(x) is a stochastic matrix.

Moreover, one has V (x) = xTn(x), and Tn(x) =
n∑

l=1

xlTn(el). Hence, each q.s.o. V can be

uniquely defined by stochastic matrices, i.e.

V = {Tn(e1),Tn(e2), . . . ,Tn(en)} . (2.6)

3. Description of b-bistochastic q.s.o.
In this section, we are going to provide some general properties of b−bistochastic q.s.o. In [9],
we have proved the following fact.

Theorem 3.1. [9] Let V be a b−bistochastic q.s.o. defined on Sn−1, then the following
statements hold:

(i)
k∑

m=1

n∑
i,j=1

Pij,m ≤ kn, k ∈ {1, . . . , n}

(ii) Pij,k = 0 for all i, j ∈ {k + 1, . . . , n} where k ∈ {1, . . . , n− 1}
(iii) Pnn,n = 1

(iv) for every x ∈ Sn−1 one has

V (x)k =
k∑

l=1

Pll,kx
2
l + 2

k∑
l=1

n∑
j=l+1

Plj,kxlxj where k = 1, n− 1

V (x)n = x2n +
n−1∑
l=1

Pll,nx
2
l + 2

n−1∑
l=1

n∑
j=l+1

Plj,nxlxj .

(v) Plj,l ≤
1

2
for all j ≥ l + 1, l ∈ {1, . . . , n− 1}.
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This properties are only necessary conditions for a b−bistochastic q.s.o.. Indeed, consider the
following example.

Example 3.2. Let V : S3 → S3 be a q.s.o given by the following heredity coefficients


0 1 0 0

0 1 0 0

0 1 0 0

0 0 P4,1,3 1− P4,1,3

 ,


0 1 0 0

0 1 0 0

0 1/2 P3,2,3 1/2− P3,2,3

0 1/2 P4,2,3 1/2− P4,2,3

 ,


0 1 0 0

0 1/2 P3,2,3 1/2− P3,2,3

0 0 P3,3,3 1− P3,3,3

0 0 P4,3,3 1− P4,3,3

 ,


0 0 P4,1,3 1− P4,1,3

0 1/2 P4,2,3 1/2− P4,2,3

0 0 P4,3,3 1− P4,3,3

0 0 0 1

 ,


where 2P4,1,3 + 2P3,2,3 + 2P4,2,3 + P3,3,3 + 2P4,3,3 ≤ 4. Note that Pij,k = Pji,k. One can see that
such an operator is not a b−bistochastic q.s.o., since for x = (0.1, 0.1, 0.8, 0) we have

V (x)1 + V (x)2 = P1,1,1x1
2 + 2P1,2,1x1x2 + 2P1,3,1x1x3 + 2P1,4,1x1 (1− x1 − x2 − x3)

+P1,1,2x1
2 + 2P1,2,2x1x2 + 2P1,3,2x1x3 + 2P1,4,2x1 (1− x1 − x2 − x3)

+P2,2,2x2
2 + 2P2,3,2x2x3 + 2P2,4,2x2 (1− x1 − x2 − x3)

= 0 + 0.28 ≥ 0.1 + 0.1.

Moreover, under the condition 2P4,1,3+2P3,2,3+2P4,2,3+P3,3,3+2P4,3,3 ≤ 4, the property (i) in
Theorem 3.1 holds. The other properties also satisfy accordingly due to the construction of the
q.s.o.

In what follow, we want to recall a fascinating result on b−bistochastic linear operators. Let
T be a linear stochastic operator T : Sn−1 → Sn−1 such that

T (x)k =

n∑
i=1

tikxi where tik ≥ 0,

n∑
k=1

tik = 1, x = (x1, . . . , xn) ∈ Sn−1. (3.1)

In [16], it was showed the simplified form of linear b−bistochastic operators. Namely,

Theorem 3.3. [16] Let T be a linear stochastic operator defined on Sn−1. Then T is a
b−bistochastic if and only if T is an upper triangular stochastic matrix, i.e.

T =


t11 t12 t13 . . . t1n
0 t22 t23 . . . t2n
0 0 t33 . . . t3n
...

...
...

. . .
...

0 0 0 . . . 1

 .

From this theorem, it is interesting to know the following question: if we take {Tn(ek)} (in
the representation (2.6)) all the stochastic matrices to be upper triangular, then would V be a
b-stochastic q.s.o.?

For each j ∈ {1, . . . , n} let Tn(ej) be a stochastic matrix given be

Tn(ej) =
(
a
(j)
ik

)n
i,k=1

; j = 1, 2, . . . , n. (3.2)
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We define a quadratic operator V : Sn−1 → Sn−1 by

V (x)k =

n∑
i,j

a
(j)
ik xixj ; k = 1, n, x = (x1, x2, . . . , xn) ∈ Sn−1. (3.3)

Let us assume that, Tn(ej) is taking upper triangular stochastic form i.e.

Tn(ej) =


a
(j)
11 a

(j)
12 a

(j)
13 . . . a

(j)
1n

0 a
(j)
22 a

(j)
23 . . . a

(j)
2n

0 0 a
(j)
33 . . . a

(j)
3n

...
...

...
. . .

...
0 0 0 . . . 1

 (3.4)

for every j = 1, 2, . . . , n.

Theorem 3.4. Let {Tn(ej)}, j = 1, 2, . . . , n be a collection of upper triangular stochastic
matrices and V be the associated q.s.o. defined by (3.3). Then V is a b-bistochastic operator.

Proof. Let x = (x1, x2, . . . , xn). Using the fact

V (x)k =

n∑
i,j=1

a
(j)
ik xixj =

k∑
i=1

n∑
j=1

a
(j)
ik xixj

one gets

k∑
l=1

V (x)l =
n∑

j=1

a
(j)
11 x1xj +

2∑
i=1

n∑
j=1

a
(j)
i2 xixj + · · ·+

k∑
i=1

n∑
j=1

a
(j)
ik xixj

= x1

n∑
j=1

a
(j)
11 xj + x1

n∑
j=1

a
(j)
12 xj + x2

n∑
j=1

a
(j)
22 xj + · · ·+

x1

n∑
j=1

a
(j)
1k xj + x2

n∑
j=1

a
(j)
2k xj + · · ·+ xk

n∑
j=1

a
(j)
kk xj

= x1

 k∑
l=1

n∑
j=1

a
(j)
1l xj

+ x2

 k∑
l=2

n∑
j=1

a
(j)
2l xj

+ · · ·+ xk

n∑
j=1

a
(j)
kk xj

=
k∑

i=1

xi

 n∑
j=1

k∑
l=i

a
(j)
il xj

 .

We know that
∑k

l=i a
(j)
il ≤ 1 for each i, hence

k∑
l=1

V (x)l ≤
k∑

i=1

xi

 n∑
j=1

xj

 =

k∑
i=1

xi

This completes the prove.
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Remark 3.5. It is worth to note, in general the necessary and sufficient conditions of
b−bistochastic quadratic operators may not need to be upper triangular stochastic matrices. Let
us choose the following quadratic operators (indeed it is a q.s.o.):

0 0 1
1
2 0 1

2
0 0 1

 ,

1
2 0 1

2
0 0 1
0 0 1

 ,

0 0 1
0 0 1
0 0 1

 . (3.5)

Let x = (x1, x2, x3) ∈ S2, then one has V (x)1 = x1x2 and V (x)2 = 0. In addition, the statement
x2 ≤ 1 and x1x2 ≤ x1 is always true for any x = (x1, x2, x3) ∈ S2. Therefore, one finds that

V (x)1 = x1x2 ≤ x1, V (x)1 + V (x)2 = x1x2 ≤ x1 + x2.

which shows q.s.o. given by (3.5) is a b−bistochastic q.s.o..

Furthermore, due to Theorem 3.1, we introduce a stochastic cubic matrix such that


a
(1)
11 a

(1)
12 a

(1)
13 . . . a

(1)
1n

a
(1)
21 a

(1)
22 a

(1)
23 . . . a

(1)
2n

a
(1)
31 a

(1)
32 a

(1)
33 . . . a

(1)
3n

...
...

...
. . .

...

a
(1)
n1 a

(1)
n2 a

(1)
n3 . . . a

(1)
nn

 ,


a
(2)
11 a

(2)
12 a

(2)
13 . . . a

(2)
1n

0 a
(2)
22 a

(2)
23 . . . a

(2)
2n

0 a
(2)
32 a

(2)
33 . . . a

(2)
3n

...
...

...
. . .

...

0 a
(2)
n2 a

(2)
n3 . . . a

(2)
nn

 ,


a
(3)
11 a

(3)
12 a

(3)
13 . . . a

(3)
1n

0 a
(3)
22 a

(3)
23 . . . a

(2)
2n

0 0 a
(3)
33 . . . a

(3)
3n

...
...

...
. . .

...

0 0 a
(3)
n3 . . . a

(3)
nn

 , . . . ,


a
(n)
11 a

(n)
12 a

(n)
13 . . . a

(n)
1n

0 a
(n)
22 a

(n)
23 . . . a

(n)
2n

0 0 a
(n)
33 . . . a

(n)
3n

...
...

...
. . .

...
0 0 0 . . . 1




In short,

Tn(ej) =
(
a
(j)
ik

)n
i,k=1

, j = 1, 2, . . . n

where

a
(j)
i,k = 0; i, j = k + 1, n, k = 1, n− 1 (3.6)

Note that, under the constraints given by (3.6), we shall use Theorem 3.1 which reduces the
components of vector V (x)k to

V (x)k =

k∑
l=1

a
(l)
l,kx

2
l +

k∑
l=1

n∑
j=l+1

(
a
(j)
l,k + a

(l)
j,k

)
xlxj where k = 1, n− 1 (3.7)

V (x)n = x2n +

n−1∑
l=1

a
(l)
l,nx

2
l +

n−1∑
l=1

n∑
j=l+1

(
a
(j)
l,n + a

(l)
j,n

)
xlxj (3.8)

Theorem 3.6. Let V be a quadratic operator given by (3.3) and let the corresponding collection
{Tn(ej)} satisfy the constraints (3.6). If

n−1∑
l=1

(
a
(j)
i,l + a

(i)
j,l

)
≤ 1 for every j = i+ 1, n where i = 1, n− 1, (3.9)

then V is a b-bistochastic operator.
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Proof. Clearly from (3.7) one gets

V (x)1 = a
(1)
1,1x

2
1 +

n∑
j=2

(
a
(j)
1,1 + a

(1)
j,1

)
x1xj

V (x)2 = a
(1)
1,2x

2
1 + a

(1)
2,2x

2
2 +

n∑
j=2

(
a
(j)
1,2 + a

(1)
j,2

)
x1xj +

n∑
j=3

(
a
(j)
2,2 + a

(2)
j,2

)
x2xj

...

V (x)k = a
(1)
1,kx

2
1 + · · ·+ a

(k)
k,kx

2
k +

n∑
j=2

(
a
(j)
1,k + a

(1)
j,k

)
x1xj + · · ·+

+

n∑
j=k+1

(
a
(j)
k,k + a

(k)
j,k

)
xkxj

Therefore, one finds that

k∑
l=1

V (x)l = x1

x1

(
k∑

l=1

a
(1)
1,l

)
+

n∑
j=2

(
k∑

l=1

(
a
(j)
1,l + a

(1)
j,l

))
xj

+

x2

x2

(
k∑

l=2

a
(2)
2,l

)
+

n∑
j=3

(
k∑

l=2

(
a
(j)
2,l + a

(2)
j,l

))
xj

+ · · ·+

xk

xk

(
a
(k)
k,k

)
+

n∑
j=k+1

(
a
(j)
k,k + a

(k)
j,k

)
xj

 ,

for any k = 1, 2, . . . , n− 1.

Due to stochasticity, then we know
∑k

l=i a
(i)
i,l ≤ 1 for every i = 1, k. Moreover, based on the

conditions (3.9), we have

xt

xt

(
k∑
l=t

a
(t)
t,l

)
+

n∑
j=t+1

(
k∑
l=t

(
a
(j)
t,l + a

(t)
j,l

))
xj

 ≤ xt

xt +

n∑
j=2

xj


for any t ∈ {1, . . . , k}. By virtue of the last inequality, it will imply that

k∑
l=1

V (x)l ≤ x1

x1 +
n∑

j=2

xj

+ x2

x2 +
n∑

j=3

xj

+ · · ·+ xk

xk +
n∑

j=k+1

xj


≤

k∑
l=1

xl

This completes the proof.

Remind that, the reverse is not true. For instance, a quadratic operator (again it is a q.s.o.)
0 0 1

1
2

1
2 0

0 0 1

 ,

1
2

1
2 0

0 0 1
0 0 1

 ,

0 0 1
0 0 1
0 0 1

 , (3.10)
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which is a b−bistochastic operator i.e.

V (x)1 = x1x2 ≤ x1 and V (x)1 + V (x)2 = x1x2 + x1x2 ≤ x1 + x2.

One can see that if i = 1 and j = 2, then 2a
(2)
1,1 + 2a

(1)
2,2 = 2 > 1.
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