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Abstract. In this paper we present a decomposition of HLn(L,L) into a
direct sum of some subspaces for a finite dimensional complex semisimple
Leibniz algebra L. Furthermore, we provide a more specific decomposition
in case n = 2 into two subspaces. We verify that one of those subspaces
annihilates for specific Leibniz algebras with liezation sl2 and some others.

1. Introduction
Leibniz algebras were rediscovered by A. Bloh [3] and later were given another
impulse of investigation due to works of J.–L. Loday [7] who discovered that
the classical Chevalley–Eilenberg boundary map in the exterior module of a Lie
algebra can be lifted to the tensor module. To prove that it becomes a chain
complex the only identity needed is a so called Leibniz identity which yields to
definition of Leibniz algebra and Leibniz (co)homology.

In this work we study Leibnz algebra cohomology and using an idea from [1]
we decompose the cochain space CLn(L,L) into a direct sub of special subspaces
that we call level spaces. Further we concentrate on so called semisimple Leibniz
algebras. They are Leibniz algebras with corresponding Lie algebras being
semisimple. Semisimple Leibniz algebra L can be naturally consider as a Z2-
graded algebra with L0 being its liezation and L1 = I. We notice that due
to structural properties of semisimple Leibniz algebras, coboundary operator
preserves the level spaces. Thus we are able to establish in Theorem 4.3 a
decomposition of HLn(L,L) into direct sum of n subspaces, that we label from
−n+ 1 to 0.

Our goal is to check proposed conjecture in [2] that HL2(L,L) = 0 for any
finite-dimensional complex semisimple Leibniz algebra L. Authors in [2] validate
the claim for simple Leibniz algebra with liezation L/I ∼= sl2 over C.

In order to conjecture to hold, we elaborate on each of the subspaces in the
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decomposition of HL2(L,L) to be zero and present equivalent conditions to
the conjecture to be true in Proposition 5.6 and Proposition 5.7 in terms of Lie
algebra and their representations.

In the last section, we establish that space of level −1 is zero for all finite-
dimensional Leibniz algebras with liezation sl2 in Theorem 6.1 and we check
analogous statement for another Leibniz algebra with liezation sl2 ⊕ sl2 in
Theorem 6.2.

2. Preliminaries
Given a Lie algebra and its non-trivial module a different algebraic structure
arises on the direct sum.

Example 2.1. ([5]) Let g be a Lie algebra and M be a g-module. Consider
L = g⊕M with a bracket [(g1,m1), (g2,m2)] := ([g1, g2],−g2.m1). Then

[[x, y], z] = [[x, z], y] + [x, [y, z]] (1)

holds for any x, y, z ∈ L and this algebra is not a Lie algebra if the action of g
on M is not trivial.

Looking to the above identity (1) one notices that the right multiplication
operator [−, z] by any element z is a derivation (see [6]) and satisfies a so called
Leibniz rule. Although defined earlier by A. Bloh [3] these objects attracted
more attention after series of J.-L. Loday and his collaborators’ works.

Definition 2.2. An algebra (L, [−,−]) over a field K is called a Leibniz algebra
if identity (1) holds.

Leibniz algebra of Example 2.1 is denoted as g u M and is called
hemisemidirect product Leibniz algebra in [5].

Any Lie algebra is a Leibniz algebra but not the converse. Given a Leibniz
algebra L its two sided ideal generated by elements [x, x] for all x ∈ L is very
important. In this work we denote this ideal by I. The quotient Leibniz algebra
L/I is easily seen to be a Lie algebra, called the liezation of Leibniz algebra L.

Definition 2.3. The set AnnR(L) = {x ∈ L | [L, x] = 0} of a Leibniz algebra L
is called the right annihilator of L.

One can show that AnnR(L) is an ideal of L. Note that due to Leibniz
identity it follows that [L, I] = 0. Thus I is a subset of a right annihilator
AnnR(L) = {x ∈ L | [L, x] = 0}. The center is defined as Z(L) = {x ∈ L |
[x, L] = [L, x] = 0}. If I = L then Leibniz algebra is a trivial algebra with all
products being zero. If I = 0 then L is a Lie algebra. In this work we assume
I to be non trivial, eliminating Lie and trivial Leibniz algebras from the study.

One has a short exact sequence 0 → I → L
f−→ g → 0. Note that projection f

is universal in the sense that a Leibniz map from L to any Lie algebra factors
through f .

A representation M of a Leibniz algebra L is introduced in [6].
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Definition 2.4. A vector space M is called a representation or bimodule over
a Leibniz algebra L if there are two bilinear maps:

[−,−] : L×M →M and [−,−] : M × L→M

satisfying the following three axioms

[m, [x, y]] = [[m,x], y]− [[m, y], x],

[x, [m, y]] = [[x,m], y]− [[x, y],m],

[x, [y,m]] = [[x, y],m]− [[x,m], y],

for any m ∈M , x, y ∈ L.

A Leibniz bimodule is called anti-symmetric when [x,m] = 0 for x ∈ L, m ∈
M. Provided that, the last two required identities vanish. Since ideal I is in the
right-annihilator, if x ∈ I or y ∈ I the first identity vanishes as well. Therefore,
the action of L on anti-symmetric L-bimodule M is determined by the action
of complement of I that is required to satisfy only the first axiom.

Now for g ∈ g define g ◦m := −[m,ϕ(g)], where ϕ is an inverse map of f .
These are well-defined, since if g = g′ then ϕ(g − g′) ∈ I and I is in the right
annihilator. Moreover, the first identity turns into

[g1, g2] ◦m = −[m,ϕ([g1, g2])] = −[m, [ϕ(g1), ϕ(g2)])] =

− [[m,ϕ(g1)], ϕ(g2)] + [[m,ϕ(g2)], ϕ(g1)] = g2 ◦ [m,ϕ(g1)]− g1 ◦ [m,ϕ(g2)]
= g1 ◦ (g2 ◦m)− g2 ◦ (g1 ◦m),

i.e. M becomes a left g-module (or a right g-module with action m ◦ g =
[m,ϕ(g)]).

Conversely, if M is a left g-module with an action ◦ : g×M → M, then by
defining [m, l] := −f(l) ◦m for l ∈ L implies by the arguments above that M
is an anti-symmetric L-bimodule.

Thus, anti-symmetric Leibniz L-bimodule is equivalent to a Lie algebra g-
module of it liezation g. For instance, an ideal generated by squares I can be
considered as a Lie algebra module over liezation g.

Call Leibniz algebra L semisimple if g is semisimple. L is called simple if the
only non-trivial ideal of L is I ̸= [L,L]. These agrees with suggested definition
in [1]. T. Pirashvili proved the following statement.

Proposition 2.5. ([10]) Let f : L → g be an epimorphism from an arbitrary
finite dimensional Leibniz algebra L to semisimple Lie algebra g. Then f admits
a section.

Considering a semisimple Leibniz algebra L its liezation by definition is a
semisimple Lie algebra. The fundamental projection onto its liezation admits a
section due to the above proposition. This leads to a key fact that is the base
of the study on decomposition of cohomology of semisimple Leibniz algebras in
the following sections.
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Corollary 2.6. Let L be a finite dimensional semisimple Leibniz algebra with
liezation g. Then L ∼= gu I.

A cohomology of a Leibniz algebra L with coefficients in the representation
M are defined in [8] as follows.

Define the space of n-cochains CLn(L,M) = HomK(L
⊗n,M) for n ≥ 0 and

a K-homomorphism ∂n : CLn(L,M) → CLn+1(L,M) by

(∂nf)(x1, . . . , xn+1) := [x1, f(x2, . . . , xn+1)]+

+

n+1∑
i=2

(−1)i[f(x1, . . . , x̂i, . . . , xn+1), xi]+

+
∑

1≤i<j≤n+1

(−1)j+1f(x1, . . . , xi−1, [xi, xj ], xi+1, . . . , x̂j , . . . , xn+1).

This (CL∗(L,M), ∂) is a cochain complex. Its n-th cohomology group is
well defined by HLn(L,M) := ZLn(L,M)/BLn(L,M), where the elements
ZLn(L,M) := ker ∂n and BLn(L,M) := im ∂n−1 are called n-cocycles and
n-coboundaries, respectively.

Recall that it is noted in [8] that

ML := {m ∈M | [l,m] = 0, ∀l ∈ L} = HL0(L,M)

which is called bisubmodule of left invariants of M.
In Leibniz algebras a derivation is defined as usual.

Definition 2.7. A linear map d : L→M is called a derivation of L in M if

d([x, y]) = [d(x), y] + [x, d(y)] for any x, y ∈ L.

Space of all derivations from L to M is denoted by Der(L,M).

Moreover, for a given m ∈M a map Rm : L→M defined by Rm(l) = [l,m]
is a derivation. It is called an inner derivation and running through all of the
elements of the bimodule we obtain space of inner derivation Innder(L,M).

It is known that HL1(L,M) = Der(L,M)/ Innder(L,M).
If M is an anti-symmetric L-bimodule then inner derivations are zero and

HL1(L,M) = Der(L,M) = {f : L→M | f([l1, l2]) = [f(l1), l2]}.

Further, in [8] considering La as the antisymmetric representation whose
underlying K module is L and action L× La → L is Leibniz bracket of L, it is
claimed that HL1(L,La) ̸= 0. Indeed, taking an identity map id|L we see that
id ∈ HL1(L,La). With similar arguments once can obtain that HL1(L, I) ̸= 0
where I is an L-module by the algebra bracket action.

Note that when M is symmetric L-bimodule [8] establishes

HL1(L,M) = HL1(g,M) = H1(g,M)

for liezation g of Leibniz algebra L.
However, similar statement for anti-symmetric M does not hold.
One of the main tools in this work relies on T. Pirashvili’s result [10] on

Leibniz cohomology of semisimple Lie algebras.
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Theorem 2.8. [10] Let g be a finite dimensional semisimple Lie algebra and
M be a Leibniz representation of g. Then HLn(g,M) = 0 for all n ≥ 2.

It was proved by constructing some spectral sequences. The same result
was proved by P. Ntolo [9] using Casimir element and constructing the explicit
homotopy.

3. Decomposition of CLn(L,L) for a Leibniz algebra
Let V be a vector space over a field K and V = V0 ⊕ V1 be a non-trivial
decomposition. The goal of this section is to present the decomposition of
HomK(V

⊗n, V ) that will be heavily used in the next sections.
For a natural number n and an integer k define I(n, k) to be a set of bijections

from {1, 2, . . . , n} to a set of k ones and n−k zeros for 0 ≤ k ≤ n and I(n, k) = ∅
otherwise.

For a bijection π ∈ I(n, k) and a number j equal to 0 or 1 let us denote for

short Hj
π(1)...π(n) := HomK(Vπ(1) ⊗ · · · ⊗ Vπ(n), Vj).

Denote by CLn(V, V ) = HomK(V
⊗n, V ) and define for −n ≤ k ≤ 1 a

subspace CLn(V, V )(−k) =

(
⊕

π∈I(n,k)
H0

π(1)...π(n)

)
⊕

(
⊕

π∈I(n,k+1)
H1

π(1)...π(n)

)
.

Note that there are
(
n
k

)
+
(

n
k+1

)
=

(
n+1
k+1

)
summands in the above decomposition.

Moreover, for any Hj
π(1)...π(n) in this decomposition one has k = j − (π(1) +

· · ·+ π(n)).
Let us call subspace CLn(V, V )(k) of level k. The following statement

presents a decomposition isomorphic to CLn(V, V ) into subspaces of all possible
levels −n, . . . , 0, 1.

Proposition 3.1. CLn(V, V ) ∼=
⊕1

k=−nCL
n(V, V )(−k).

Proof. We have

CLn(V, V ) = Hom(V ⊗n, V ) = Hom((V0 ⊕ V1)
⊗n, V0 ⊕ V1)

∼= Hom((V0 ⊕ V1)
⊗n, V0)⊕Hom((V0 ⊕ V1)

⊗n, V1)
∼= Hom(V1 ⊗ V1 ⊗ · · · ⊗ V1, V0)

⊕⊕(
⊕

i∈I(n,n−1)
H0

i(1)...i(n) ⊕ ⊕
i∈I(n,n)

H1
i(1)...i(n)

)⊕
...⊕(

⊕
i∈I(n,0)

H0
i(1)...i(n) ⊕ ⊕

i∈I(n,1)
H1

i(1)...i(n)

)⊕
⊕

Hom(V0 ⊗ V0 ⊗ · · · ⊗ V0, V1),

or in more compact form

CLn(V, V ) ∼=
n⊕

k=−1

(
⊕

i∈I(n,k)
H0

i(1)...i(n)

)
⊕

(
⊕

i∈I(n,k+1)
H1

i(1)...i(n)

)
.

Hence, the claim is proved.
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4. Decomposition of HLn(L,L) for semisimple Leibniz algebra
Now consider a semi-simple Leibniz algebra L as an adjoint representation of L,
i.e. L acting on itself by Leibniz algebra bracket. Due to Corollary 2.6 we have
L ∼= I u g. Setting L0 = g and L1 = I cochain spaces CLn(L,L) admits the
decomposition of Proposition 3.1. However, due to [L, I] = 0 one can obtain
more properties of the coboundary operator.

Proposition 4.1. Coboundary operator ∂ preserves the level spaces.

Proof. For a non-zero φ ∈ CLn(L,L)(k) consider ∂φ(x1, . . . , xn, xn+1), where
exactly m of x1, . . . , xn+1 belong to I. It is evident that if m < k or m > k+ 1
then ∂φ(x1, . . . , xn, xn+1) = 0. We will consider the other possible cases.

Let φ ∈ H0
i(1)...i(n) for some i ∈ I(n, k). If m = k then due to imφ ∈ g it

follows that ∂φ(x1, . . . , xn, xn+1) ∈ g. If m = k + 1 then ∂φ(x1, . . . , xn, xn+1)
belongs to I if x1 ∈ I and zero otherwise. Hence,

∂(H0
i(1)...i(n)) ⊆

(
⊕

j∈I(n+1,k)
H0

j(1)...j(n+1)

)
⊕H1

1i(1)...i(n).

Now consider φ ∈ H1
i(1)...i(n) for some i ∈ I(n, k+1). It is obvious thatm = k

implies ∂φ(x1, . . . , xn, xn+1) = 0. One verifies the last possibility m = k + 1 to
yield ∂(H1

i(1)...i(n)) ⊆ ⊕
j∈I(n+1,k+1)

H1
j(1)...j(n+1).

Thus ∂(CLn(L,L)(−k)) ⊆ CLn+1(L,L)(−k) for all −1 ≤ k ≤ n.

Let us denote by ZLn(L,L)(k) the kernel of restriction of ∂ on CLn(L,L)(n)
and by BLn(L,L)(k) the image of restriction of ∂ on CLn−1(L,L)(k) for all
−n ≤ k ≤ 1.

Proposition 4.2. Let L be a finite-dimensional semisimple Leibniz algebra.
Then ZLn(L,L)(−n) = 0 for all positive integers n.

Proof. Let φ ∈ ZLn(L,L)(−n). Then φ : ⊗nI → g and ∂φ(g, i1, . . . , in) =
[g, φ(i1, . . . , in)] = 0 for all g ∈ g, i1, . . . , in ∈ I. This yields imφ ∈ Z(g) which
is zero since g is semi-simple. Therefore, φ = 0 and we are done.

Provided with Proposition 4.1 one has BLn(L,L)(k) ⊆ ZLn(L,L)(k)
and consider subspace ZLn(L,L)(k)/BL

n(L,L)(k). Let us denote it by
HLn(L,L)(k), for all −n ≤ k ≤ 1. As a consequence on Propositions 3.1
and 4.1 we have the following

Theorem 4.3. Let L be a finite-dimensional semisimple Leibniz algebra. Then

HLn(L,L) ∼= HLn(L,L)(−n+1) ⊕ · · · ⊕HLn(L,L)(−1) ⊕HLn(L,L)(0)

for n ≥ 2 and HL1(L,L) ∼= HL1(L,L)(0) ⊕HL1(g, I).
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Proof. Clearly, we have

BLn(L,L) ∼=
⊕1

k=−nBL
n(L,L)(−k),

ZLn(L,L) ∼=
⊕1

k=−n ZL
n(L,L)(−k).

Note that by definition BLn(L,L)(−n) = 0 and together with Proposition 4.2
we obtain HLn(L,L)(−n) = 0.

Observe that HLn(L,L)(1) = HLn(g, I). If n > 1 by Theorem 2.8 it is zero.
Hence, the result follows.

5. HL2(L,L) for semisimple Leibniz algebra
Let us describe BL2(L,L) = BL2(L,L)(−1)⊕BL2(L,L)(0)⊕BL2(L,L)(1) first.

Proposition 5.1. A coboundary operator ∂ acts on CL1(L,L) as follows:

H0
1 ↪→ H0

10 ⊕H0
01 ⊕H1

11, H
1
1 ⊕H0

0 → H0
10 ⊕H0

00, H
1
0 → H1

00.

Proof. Consider ∂d for d ∈ CL1(L,L). We list the only non-zero actions of ∂d
on an element (x, y) ∈ (Li(1), Li(2)) depending on d.

1. Let d ∈ CL1(L,L)(−1) = H0
1 . Then ∂(H

0
1 ) ⊆ H1

11 ⊕H0
01 ⊕H0

10. Indeed,
∂d(x0, y1) = [x0, d(y1)] ∈ L0,
∂d(x1, y0) = [d(x1), y0]− d([x1, y0]) ∈ L0,
∂d(x1, y1) = [x1, d(y1)] ∈ L1.
Moreover, if ∂d = 0 then from [x0, d(y1)] = 0 we obtain d = 0, i.e. ∂ sends

H0
1 toH1

11⊕H0
01⊕H0

10 injectively. In particular, this implies dimBL2
(−1)(L,L) =

dimH0
1 = dimHom(L1, L0) = dimL1 · dimL0.

2. Let d ∈ CL1(L,L)(0) = H1
1 ⊕H0

0 . Then we analyse separate cases.

2.1 Let d1 ∈ H1
1 . Then ∂(H

1
1 ) ⊆ H1

10. Indeed,
∂d1(x1, y0) = [d1(x1), y0]− d1([x1, y0]) ∈ L1.
2.2 Let d0 ∈ H0

0 . Then ∂(H
0
0 ) ⊆ H0

00 ⊕H1
10. Indeed,

∂d0(x0, y0) = [d0(x0), y0] + [x0, d0(y0)]− d0([x0, y0]) ∈ L0,
∂d0(x1, y0) = [x1, d0(y0)] ∈ L1.
3. Let d ∈ CL1(L,L)(1) = H1

0 . Then ∂(H1
0 ) ⊆ H1

00. Indeed, ∂d(x0, y0) =
[d(x0), y0]− d([x0, y0]) ⊆ L1.

Now we will concentrate on ZL2(L,L). For a φ ∈ CL2(L,L) we have

∂φ(x, y, z) = [x, φ(y, z)]− [φ(x, y), z] + [φ(x, z), y]

+ φ(x, [y, z])− φ([x, y], z) + φ([x, z], y) (2)

By Proposition 4.2 there is a decomposition ZL2(L,L) = ZL2(L,L)(−1) ⊕
ZL2(L,L)(0) ⊕ ZL2(L,L)(1). We have ZL2(L,L)(−1) = ker ∂|H0

10⊕H0
01⊕H1

11
and

proposition below shows that coboundary operator takes every component of
CL2(L,L)(−1) injectively.
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Proposition 5.2. A coboundary operator ∂ acts on CL2(L,L)(−1) as follows

H0
01 ↪→ H1

101 ⊕H0
010 ⊕H0

001,
H0

10 ↪→ H1
110 ⊕H0

100 ⊕H0
010,

H1
11 ↪→ H1

101 ⊕H1
110.

Proof. We have CL2(L,L)(−1) = H0
10 ⊕H0

01 ⊕H1
11. Now let us examine how ∂

acts on each of the subspaces.
Case 1. Let φ ∈ H0

01. Then in the system (2) the only non-zero equalities
are

∂φ(x1, y0, z1) = [x1, φ(y0, z1)] ∈ L1,
∂φ(x0, y0, z1) = [x0, φ(y0, z1)] + [φ(x0, z1), y0]− φ([x0, y0], z1) ∈ L0,
∂φ(x0, y1, z0) = −[φ(x0, y1), z0] + φ(x0, [y1, z0]) + φ([x0, z0], y1) ∈ L0.

Hence, H0
01 → H1

101⊕H0
010⊕H0

001. Now if φ ∈ ker ∂|H0
01

then [x1, φ(y0, z1)] = 0

implies φ(y0, z1) ⊆ I = L1 while imφ ⊆ L0.
Thus φ = 0 and H0

01 ↪→ H1
101 ⊕H0

010 ⊕H0
001.

Case 2. Let φ ∈ H0
10. Similarly, we have the following equalities from system

(2):

∂φ(x0, y1, z0) = [x0, φ(y1, z0)] ∈ L0

∂φ(x1, y0, z0) = −[φ(x1, y0), z0] + [φ(x1, z0), y0]
+φ(x1, [y0, z0])− φ([x1, y0], z0) + φ([x1, z0], y0) ∈ L0

∂φ(x1, y1, z0) = [x1, φ(y1, z0)] ∈ L1

Hence, H0
10 → H1

110 ⊕H0
100 ⊕H0

010. Analogously as above, if φ ∈ ker ∂|H0
10

then equality [x1, φ(y1, z0)] = 0 implies φ = 0. Therefore, H0
10 ↪→ H1

110⊕H0
100⊕

H0
010.
Case 3. Let φ ∈ H1

11, then system (2) implies

∂φ(x1, y0, z1) = [φ(x1, z1), y0]− φ([x1, y0], z1) ∈ L1,
∂φ(x1, y1, z0) = −[φ(x1, y1), z0] + φ(x1, [y1, z0]) + φ([x1, z0], y1) ∈ L1.

Assuming φ ∈ ker ∂|H1
11

from the equalities ∂φ(x1, z0, y1) = ∂φ(x1, y1, z0) = 0

we obtain φ(x1, [y1, z0]) = 0. Due to [I, g] = I it implies φ = 0. Hence,
H1

11 ↪→ H1
101 ⊕H1

110.

We have ∂(H0
00 ⊕ H1

01 ⊕ H1
10) ⊆ H0

000 ⊕ H1
100 ⊕ H1

010 ⊕ H1
001. Now let us

examine how ∂ acts on each of the subspaces.

Proposition 5.3. Coboundary operator acts on CL2(L,L)(0) as follows

∂ : H0
00 ↪→ H1

100 ⊕H0
000

∂ : H1
10 → H1

100

∂ : H1
01 ↪→ H1

010 ⊕H1
001

and ZL2(L,L)(0) = ker ∂|H0
00⊕H1

10
.
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Proof. Case 1. Assume φ ∈ H0
00, by system (2) we have

∂φ(x1, y0, z0) = [x1, φ(y0, z0)] ∈ L1,
∂φ(x0, y0, z0) = [x0, φ(y0, z0)]− [φ(x0, y0), z0] + [φ(x0, z0), y0]

+φ(x0, [y0, z0])− φ([x0, y0], z0) + φ([x0, z0], y0) ∈ L0.

Given that φ ∈ ker ∂|H0
00

then [x1, φ(y0, z0)] = 0 which implies φ = 0. Thus,

∂ : H0
00 ↪→ H1

100 ⊕H0
000.

Case 2. Assuming φ ∈ H1
10 non-zero equalities of system (2) yields

∂φ(x1, y0, z0) = −[φ(x1, y0), z0] + [φ(x1, z0), y0]

+ φ(x1, [y0, z0])− φ([x1, y0], z0) + φ([x1, z0], y0) ⊆ L1.

Hence, ∂ : H1
10 → H1

100.
Case 3. Let φ ∈ H1

01. System (2) provides

∂φ(x0, y1, z0) = −[φ(x0, y1), z0] + φ(x0, [y1, z0]) + φ([x0, z0], y1) ⊆ L1;
∂φ(x0, y0, z1) = [φ(x0, z1), y0]− φ([x0, y0], z1) ∈ L1.

Then ∂ : H1
01 ↪→ H1

010 ⊕ H1
001 since assuming φ ∈ ker ∂|H1

01
the last two

equalities yield [x1, φ(y0, z0)] = 0 which implies φ = 0.
From above it follows that

ZL2(L,L)(0) = ker ∂|H0
00⊕H1

01⊕H1
10

= ker ∂|H0
00⊕H1

10
⊕ ker ∂|H1

01
= ker ∂|H0

00⊕H1
10
,

which finishes the proof.

As a consequence of the last two propositions we obtain

Theorem 5.4. For a finite dimensional semisimple Leibniz algebra L over C
we have an isomorphism

HL2(L,L) ∼= HL2(L,L)(−1) ⊕HL2(L,L)(0),

where
HL2(L,L)(−1) = ker ∂|H0

10⊕H0
01⊕H1

11
/∂(H0

1 ) and

HL2(L,L)(0) = ker ∂|H0
00⊕H1

10
/∂(H1

1 ⊕H0
0 ).

From this point we will concentrate our study on each of the subspaces of
level −1 and 0 separately.

Proposition 5.5. Any 2-cocycle φ = φ0
10 + φ0

01 + φ1
11 ∈ ker ∂|H0

10⊕H0
01⊕H1

11
is

uniquely determined by a map ϕ ∈ Hom(I ⊗ g) → g that satisfies

ϕ(x1, [y0, z0]) = ϕ([x1, y0], z0)− ϕ([x1, z0], y0).

Moreover, φ is determined by the following equalities
φ0
01(x0, [z1, y0]) = −[x0, ϕ(z1, y0)]

φ1
11(x1, [z1, y0]) = −[x1, ϕ(z1, y0)]

φ0
10([x1, y0], z0) = ϕ([x1, y0], z0)− [ϕ(x1, y0), z0]

(3)
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Proof. Let φ = φ1
11 + φ0

01 + φ0
10 ∈ ker ∂|H1

11⊕H1
01⊕H1

10
= ZL2

−1. Then ∂φ = 0

implies the following:

0 = ∂φ(x1, y0, z1) = [φ1
11(x1, z1), y0]− φ1

11([x1, y0], z1) + [x1, φ
0
01(y0, z1)],

0 = ∂φ(x0, y0, z1) = [x0, φ
0
01(y0, z1)] + [φ0

01(x0, z1), y0]− φ0
01([x0, y0], z1),

0 = ∂φ(x0, z1, y0) = −[φ0
01(x0, z1), y0] + φ0

01(x0, [z1, y0]) + φ0
01([x0, y0], z1)

+[x0, φ
0
10(z1, y0)],

0 = ∂φ(x1, y0, z0) = −[φ0
10(x1, y0), z0] + [φ0

10(x1, z0), y0]
+φ0

10(x1, [y0, z0])− φ0
10([x1, y0], z0) + φ0

10([x1, z0], y0),

0 = ∂φ(x1, z1, y0) = −[φ1
11(x1, z1), y0] + φ1

11(x1, [z1, y0]) + φ1
11([x1, y0], z1)

+[x1, φ
0
10(z1, y0)].

Adding the first and the last equalities we obtain

φ1
11(x1, [z1, y0]) = −[x1, φ

0
01(y0, z1) + φ0

10(z1, y0)].

Adding the second and the third equalities we obtain

φ0
01(x0, [z1, y0]) = −[x0, φ

0
01(y0, z1) + φ0

10(z1, y0)].

Hence, these are defining relations for φ = φ1
11 + φ0

01 + φ0
10 ∈ ZL2

−1 :

0 = [φ1
11(x1, z1), y0]− φ1

11([x1, y0], z1) + [x1, φ
0
01(y0, z1)]

0 = [x0, φ
0
01(y0, z1)] + [φ0

01(x0, z1), y0]− φ0
01([x0, y0], z1)

φ0
01(x0, [z1, y0]) = −[x0, φ

0
01(y0, z1) + φ0

10(z1, y0)]

0 = −[φ0
10(x1, y0), z0] + [φ0

10(x1, z0), y0]
+φ0

10(x1, [y0, z0])− φ0
10([x1, y0], z0) + φ0

10([x1, z0], y0)

φ1
11(x1, [z1, y0]) = −[x1, φ

0
01(y0, z1) + φ0

10(z1, y0)].

Taking third and last equations one can deduce the first equation using the

fact that any element z1 ∈ L1 has a decomposition z1 =
∑

l≤k≤m

[z1k, z
0
k] for some

zik ∈ Li for i = 0, 1 and 1 ≤ k ≤ m, m ∈ N. Indeed,

[φ1
11(x1, z1), y0] −φ1

11([x1, y0], z1) + [x1, φ
0
01(y0, z1)] =

= −
[
[x1,

∑
l≤k≤m φ

0
01(z

0
k, z

1
k) + φ0

10(z
1
k, z

0
k) ], y0

]
+

 [x1, y0],
∑

l≤k≤m

φ0
01(z

0
k, z

1
k) + φ0

10(z
1
k, z

0
k)


−

x1, [y0, ∑
l≤k≤m

φ0
01(z

0
k, z

1
k) + φ0

10(z
1
k, z

0
k)]

 = 0.
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Similarly, we can check that third equality implies the second:

[x0, φ
0
01(y0, z1)] + [φ0

01(x0, z1), y0]− φ0
01([x0, y0], z1)

= −[x0, [y0,
∑

l≤k≤m

φ0
01(z

0
k, z

1
k) + φ0

10(z
1
k, z

0
k)] ]

−

x0, ∑
l≤k≤m

φ0
01(z

0
k, z

1
k) + φ0

10(z
1
k, z

0
k)

 , y0


+

 [x0, y0],
∑

l≤k≤m

φ0
01(z

0
k, z

1
k) + φ0

10(z
1
k, z

0
k)

 = 0.

Define ϕ ∈ Hom(L1 ⊗ L0, L0) by ϕ(i, g) = φ0
01(g, i) + φ0

10(i, g). Then
substituting φ0

10(i, g) = ϕ(i, g) − φ0
01(g, i) into the fourth equation we obtain

the following:

0 =− [ϕ(x1, y0)− φ0
01(y0, x1), z0] +

[
ϕ(x1, z0)− φ0

01(z0, x1), y0
]
+

+
(
ϕ(x1, [y0, z0])− φ0

01([y0, z0], x1)
)
−

(
ϕ([x1, y0], z0)− φ0

01(z0, [x1, y0])
)

+
(
ϕ([x1, z0], y0)− φ0

01(y0, [x1, z0])
)
=

=− [ϕ(x1, y0), z0] + [ϕ(x1, z0), y0] + ϕ(x1, [y0, z0])− ϕ([x1, y0], z0)

+ ϕ([x1, z0], y0) + [φ0
01(y0, x1), z0]−

[
φ0
01(z0, x1), y0

]
− φ0

01([y0, z0], x1)

+ φ0
01(z0, [x1, y0])− φ0

01(y0, [x1, z0]) =

=
(
−[ϕ(x1, y0), z0] + φ0

01(z0, [x1, y0])
)
+

(
[ϕ(x1, z0), y0]− φ0

01(y0, [x1, z0])
)

+
(
[φ0

01(y0, x1), z0]−
[
φ0
01(z0, x1), y0

]
− φ0

01([y0, z0], x1)
)

+ (ϕ(x1, [y0, z0])− ϕ([x1, y0], z0) + ϕ([x1, z0], y0)) =

(since the bilinear forms involved here map to the Lie algebra, we can

use antisymmetry)

=
(
[z0, ϕ(x1, y0)] + φ0

01(z0, [x1, y0])
)
−

(
[y0, ϕ(x1, z0)] + φ0

01(y0, [x1, z0])
)

+
([
y0, φ

0
01(z0, x1)

]
+ [φ0

01(y0, x1), z0]− φ0
01([y0, z0], x1)

)
+ (ϕ(x1, [y0, z0])− ϕ([x1, y0], z0) + ϕ([x1, z0], y0)) .

Now the first two expressions in parentheses are zero due to third equality.
The third expression in parentheses is also zero due to second equality. Hence,
we obtain

ϕ(x1, [y0, z0])− ϕ([x1, y0], z0) + ϕ([x1, z0], y0) = 0.

Since any element z1 ∈ L1 admits a decomposition z1 =
∑

l≤k≤m

[z1k, z
0
k] for

some zik ∈ Li for i = 0, 1 and 1 ≤ k ≤ m, m ∈ N, we have

φ0
10(z1, x0) = ϕ(z1, x0)− φ0

01(x0, z1) = ϕ(z1, x0)−
∑

l≤k≤m

φ0
01(x0, [z

1
k, z

0
k])
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= ϕ(z1, x0) + [x0,
∑

l≤k≤m

ϕ(z1k, z
0
k)].

In particular,

φ0
10([x1, y0], z0) = ϕ([x1, y0], z0) + [z0, ϕ(x1, y0)] = ϕ([x1, y0], z0)− [ϕ(x1, y0), z0].

Summarizing, we can determine all components of φ = φ1
11 + φ0

01 + φ0
10 ∈

ZL2
−1 in terms of ϕ ∈ Hom(L1 ⊗ L0) → L0

φ0
01(x0, [z1, y0]) = −[x0, ϕ(z1, y0)]

φ1
11(x1, [z1, y0]) = −[x1, ϕ(z1, y0)]

φ0
10([x1, y0], z0) = ϕ([x1, y0], z0)− [ϕ(x1, y0), z0]

where ϕ satisfies

ϕ(x1, [y0, z0]) = ϕ([x1, y0], z0)− ϕ([x1, z0], y0).

For the sake of convenience, let us re-denote ϕ by ϕ(i, g) = −φ0
01(g, i) −

φ0
10(i, g). Then

φ0
01(x0, [z1, y0]) = [x0, ϕ(z1, y0)]

φ1
11(x1, [z1, y0]) = [x1, ϕ(z1, y0)]

φ0
10([x1, y0], z0) = [ϕ(x1, y0), z0]− ϕ([x1, y0], z0)

which finishes the proof of the proposition.

It is conjectured in [2] thatHL2(L,L) = 0 for any semisimple Leibniz algebra
L. Authors in [2] validate the claim for simple Leibniz algebra with L/I ∼= sl2.
Armed with the proposition above in order to check if HL2(L,L)(−1) = 0 we
arrive into an equivalent statement.

Let g be a finite dimensional semisimple complex Lie algebra and I be a
finite dimensional g-module. Denote by i.g the action of g ∈ g on i ∈ I.

Proposition 5.6. Let ϕ ∈ Hom(I ⊗ g, g). Then HL2(L,L)(−1) = 0 if and only
if

ϕ(i, [g1, g2]) = ϕ(i.g1, g2)− ϕ(i.g2, g1) (∗)

for all g1, g2 ∈ g, i ∈ I yields existence of a d ∈ Hom(I, g) such that
ϕ(i, g) = d(i.g).

Proof. Recall that BL2(L,L)(−1) consists of ∂d =: ψ = ψ0
01 + ψ1

11 + ψ0
10, where

d ∈ Hom(L1, L0) and ψ
k
ij ∈ Hk

ij are given by ψ0
01(x0, y1) = [x0, d(y1)]
ψ1
11(x1, y1) = [x1, d(y1)]
ψ0
10(x1, y0) = [d(x1), y0]− d([x1, y0])
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Consider φ ∈ ZL2(L,L)(−1). By Proposition 5.5 its components φ =

φ1
11 + φ0

01 + φ0
10 are completely determined by system of equations 3 and a

map ϕ ∈ Hom(I ⊗ g, g) that satisfies (∗).
Our conjecture holds, if and only φ = ψ. Consider φ0

01 = ψ0
01. Then

φ0
01(g0, [i, g]) = [g0, ϕ(i, g)] = [g0, d([i, g])] which yields [g0, ϕ(i, g)−d([i, g])] = 0

for any g0, g ∈ g, i ∈ I. Due to semi-simplicity it follows that ϕ(i, g) = d([i, g]).
Note that by construction [i, g] = i.g Conversely, if ϕ(i, g) = d([i, g]) holds then
one can check easily that φ = ψ.

Let us consider HL2(L,L)(0) space. Verification if the later one is zero is not
known. However, we present an equivalent conjecture in the next proposition.

Proposition 5.7. Let L be a semisimple Leibniz algebra over C. Statement
HL2(L,L)(0) = 0 is valid if and only if for any map ψ ∈ Hom(I ⊗ g, I) that
satisfies

[ψ(i, g1), g2]− [ψ(i, g2), g1]− ψ(i, [g1, g2]) + ψ(i.g1, g2)− ψ(i.g2, g1) = 0,

it follows that there exist g0 ∈ g and d ∈ Hom(I, I) such that

ψ(i, g) = i.[g0, g] + d(i).g − d(i.g).

Proof. By Theorem 5.4 the space ZL2(L,L)(0) consists of φ = φ0
00+φ

1
10, where

φ0
00 ∈ H0

00 and φ1
10 ∈ H1

10. We have the following defining equalities for φ :

∂φ0
00(x1, y0, z0) = [x1, φ

0
00(y0, z0)];

∂φ0
00(x0, y0, z0) = [x0, ∂φ

0
00(y0, z0)] − [∂φ0

00(x0, y0), z0] + [∂φ0
00(x0, z0), y0] +

∂φ0
00(x0, [y0, z0])− ∂φ0

00([x0, y0], z0) + ∂φ0
00([x0, z0], y0);

∂φ1
10(x1, y0, z0) = −[φ1

10(x1, y0), z0] + [φ1
10(x1, z0), y0] + φ1

10(x1, [y0, z0]) −
φ1
10([x1, y0], z0) + φ1

10([x1, z0], y0), where elements with subscripts equal to 1
belong to L1 := I, and L0 := g otherwise.

Therefore, for φ = φ0
00 + φ1

10 ∈ ZL2(L,L)(0) it is necessary and sufficient
that

(1) [x1, φ
0
00(y0, z0)] − [φ1

10(x1, y0), z0] + [φ1
10(x1, z0), y0] + φ1

10(x1, [y0, z0]) −
φ1
10([x1, y0], z0) + φ1

10([x1, z0], y0) = 0,

(2) φ0
00|H0

000
is a Lie 2-cocycle.

Recall, that for d = d1 + d0 ∈ H1
1 ⊕H0

0 where d0 ∈ H0
0 , d1 ∈ H1

1 we have
∂(H0

0 ) ⊆ H0
00 ⊕H1

10 and ∂(H1
1 ) ⊆ H1

10 with

∂d(x1, y0) = ∂d0(x1, y0)+∂d1(x1, y0) = [x1, d0(y0)]+[d1(x1), y0]−d1([x1, y0]),

∂d(x0, y0) = [d0(x0), y0] + [x0, d0(y0)]− d0([x0, y0]).

Since H2(L0, L0) = 0 we have φ0
00 = ∂d0|L0⊗L0 for some d0 ∈ H0

0 .
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Using Leibniz identity one can check the following equality

[x1, φ
0
00(y0, z0)] = −∂d(x1, [y0, z0]) + ∂d([x1, y0], z0)

− ∂d([x1, z0], y0) + [∂d([x1, y0]), z0]− [∂d([x1, z0]), y0],

where d = d0 + d1 and d1 ∈ Hom(L1, L1) is arbitrary.
Let us denote by ψ = φ1

10 − ∂d|L1⊗L0 . Then ψ ∈ Hom(L1 ⊗ L0, L1) and
condition (1) is equivalent to

[ψ(x1, y0), z0]−[ψ(x1, z0), y0]−ψ(x1, [y0, z0])+ψ([x1, y0], z0)−ψ([x1, z0], y0) = 0.

Observe that φ0
00 + φ1

10 = ∂d0 + ∂d1 + ψ and we are done if there exist
d̄0 ∈ H0

0 and d̄1 ∈ H1
1 such that

∂d̄0|L0⊗L0 + ∂(d̄0 + d̄1)|L1⊗L0 = ∂d0|L0⊗L0 + ∂(d0 + d1)|L1⊗L0 + ψ.

Therefore, for φ0
00+φ1

10 ∈ ZL2(L,L)(0) to be a 2-coboundary it is necessary
and sufficient to the following conditions to take place:

(i) ∂d̄0|L0⊗L0 = ∂d0|L0⊗L0 .
(ii) ∂(d̄0 + d̄1)|L1⊗L0 = ∂(d0 + d1)|L1⊗L0 + ψ.

Now (i) implies that d̄0 − d0 ∈ Z1(g, g) = Der(g). Since g is semisimple it
is known that Der(g) = Innder(g). Therefore, there exists g0 ∈ g such that
(d̄0 − d0)(g) = [g0, g]. Putting this into (ii) yields

ψ(i, g) = [i, [g0, g]] + [(d̄1 − d1)(i), g]− (d̄1 − d1)([i, g]).

Re-denoting d = d̄1 − d1 finishes the proof.

Summarizing, results of this section we have the following conjectures for
semi-simple finite-dimensional Lie algebra g and its right module I that are
equivalent to HL2(L,L)(−1) = 0 and HL2(L,L)(0) = 0, correspondingly.

Conjecture 1. Let ϕ ∈ Hom(I ⊗ g, g) satisfy

ϕ(i, [g1, g2]) = ϕ(i.g1, g2)− ϕ(i.g2, g1).

Then there exists d ∈ Hom(I, g) such that ϕ(i, g) = d(i.g).

Conjecture 2. Let ψ ∈ Hom(I ⊗ g, I) satisfy

[ψ(i, g1), g2]− [ψ(i, g2), g1]− ψ(i, [g1, g2]) + ψ(i.g1, g2)− ψ(i.g2, g1) = 0.

Then there exist g0 ∈ g and d ∈ Hom(I, I) such that

ψ(i, g) = i.[g0, g] + d(i).g − d(i.g).

Algebra, Analysis and Quantum Probability IOP Publishing
Journal of Physics: Conference Series 697 (2016) 012008 doi:10.1088/1742-6596/697/1/012008

14



6. Verification of HL2(L,L)(−1) = 0 for some algebras
Let g be a finite dimensional semisimple complex Lie algebra and I be finite
dimensional right g-module. Denote by i.g the action of g ∈ g on i ∈ I.

For ϕ ∈ Hom(I⊗g, g) let us introduce a map Φϕ ∈ Hom(I⊗g⊗g, g) defined
by

Φϕ(i, g1, g2) = ϕ(i, [g1, g2])− ϕ(i.g1, g2) + ϕ(i.g2, g1).

Note that Φϕ(i, g1, g2) = −Φϕ(i, g2, g1) and Φϕ(i, g, g) = 0.
Propositions 5.6 and 5.7 claim:

• HL2(L,L)(−1) = 0 ⇐⇒ [ Φϕ = 0 implies ϕ(i, g) = d(i.g) for some
d ∈ Hom(I, g); ]

• HL2(L,L)(0) = 0 ⇐⇒ [ Φϕ = [ψ(i, g1), g2]− [ψ(i, g2), g1] implies that there
exist g0 ∈ g and d ∈ Hom(I, I) such that ψ(i, g) = i.[g0, g]+d(i).g−d(i.g). ]

In [2] it was verified that HL2(L,L)(−1) = 0 for simple Leibniz algebra with
liezation sl2. Below we present more general result when L is not necessarily
simple Leibniz algebra with liezation sl2.

Let I = {x0, x1, . . . , xm} be an irreducible right sl2-module. The action is
very well-known to be as follows:

xk.e = −k(m+ 1− k)xk−1, k = 1, . . . ,m.
xk.f = xk+1, k = 0, . . . ,m− 1,
xk.h = (m− 2k)xk k = 0, . . . ,m,

and Lie algebra multiplication on sl2 = {e, f, h} to be

[e, h] = 2e, [h, f ] = 2f, [e, f ] = h,
[h, e] = −2e [f, h] = −2f, [f, e] = −h.

Theorem 6.1. Let L be a finite dimensional Leibniz algebra with liezation sl2.
Then HL2(L,L)(−1) = 0.

Proof. First assume that I is irreducible sl2-module. As mentioned above, we
have the basis {x0, x1, . . . , xm} of I .

Define a map d : I → g by d(xk) = ϕ(xk−1, f) for all 1 ≤ k ≤ m and
d(x0) =

1
mϕ(x0, h).

From Φϕ(xm, f, h) = 0 one obtains ϕ(xm, f) = 0 which is in accordance with
d(xm.f) = 0. Hence, we have ϕ(xk, f) = d(xk.f) for all 0 ≤ k ≤ m.

Condition Φϕ(xk, f, h) = 0 for 0 ≤ k ≤ m− 1 simplifies to

−2ϕ(xk, f) = ϕ(xk, [f, h]) = ϕ(xk.f, h)−ϕ(xk.h, f) = ϕ(xk+1, h)−(m−2k)ϕ(xk, f)

which yields

ϕ(xk+1, h) = (m− 2(k + 1))ϕ(xk, f) = (m− 2(k + 1))d(xk+1) = d(xk+1.h).

Together with ϕ(x0, h) = md(x0) = d(x0.h) we obtain ϕ(xk, h) = d(xk.h) for
all 0 ≤ k ≤ m.
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Using Φϕ(xk, e, f) = 0 for 1 ≤ k ≤ m − 1 we have the following chain of
equalities

(m− 2k)d(xk) = d(xk.h) = ϕ(xk, h) = ϕ(xk, [e, f ])
= ϕ(xk.e, f)− ϕ(xk.f, e) =
= −k(m+ 1− k)ϕ(xk−1, f)− ϕ(xk+1, e)
= −k(m+ 1− k)d(xk)− ϕ(xk+1, e).

This results in ϕ(xk+1, e) = −(k+1)(m−k)d(xk) = d(xk+1.e) for 1 ≤ k ≤ m−1.
Now Φϕ(x0, e, f) = 0 yields ϕ(x1, e) = −ϕ(x0, h) = −md(x0) = d(x1.e) and

Φϕ(x0, e, h) = 0 results in ϕ(x0, e) = 0 which is the same as d(x0.e) = 0. Thus
we have ϕ(xk, e) = d(xk.e) for all 0 ≤ k ≤ m.

Thus ϕ(i, g) = d(i.g) for all i ∈ I, g ∈ g and by Theorem 5.6 in this case we
obtain HL2(L,L)(−1) = 0.

Now assume that I is a finite dimensional sl2-module. Then it is completely
reducible. Let J be an irreducible submodule of I. Then for restriction of ϕ
on Hom(J ⊗ g, g) by the previous construction we have a map dJ ∈ Hom(J, g)
such that ϕ(j, g) = d(j.g). Defining d ∈ Hom(I, g) as a direct sum of dJ of all
irreducible submodules we obtain the desired map.

Consider a Lie algebra g = sl2 ⊕ sl2 and let I = I1 ⊕ I2 be a sum of two
irreducible sl2-modules of the same dimension (hence, isomorphic). As shown
in work [4] the action of g on I is as follows:

xk.e1 = −k(m+ 1− k)xk−1, k = 1, . . . ,m.
xk.f1 = yk+1, k = 0, . . . ,m− 1,
xk.h1 = (m− 2k)yk, k = 0, . . . ,m,
yk.e1 = −k(m+ 1− k)yk−1, k = 1, . . . ,m.
yk.f1 = yk+1, k = 0, . . . ,m− 1,
yk.h1 = (m− 2k)yk, k = 0, . . . ,m,

xj .e2 = yj .h2 = yj j = 0, . . . ,m
xj .h2 = yj .f2 = −xj j = 0, . . . ,m

where I1 = Span{x0, x1, . . . , xm}, I2 = Span{y0, y1, . . . , ym} and sli2 =
⟨ei, fi, hi⟩ for i = 1, 2.

Let L1 = I1 ⊕ I2 ⊕ sl12 ⊕ sl22 be a Leibniz algebra with table of multiplication
as above.

Proposition 6.2. For Leibniz algebra L1 we have HL2(L1, L1)(−1) = 0.

Proof. Define a map d : I → sl12⊕sl22 by d(xk) = ϕ(xk−1, f1), d(yk) = ϕ(yk−1.f1)
for all 1 ≤ k ≤ m and d(x0) = 1

mϕ(x0, h1), d(y0) = 1
mϕ(y0, h1). Then by the

proof of Theorem 6.1 we have ϕ(i, g) = d(i.g) for all i ∈ I1 ⊕ I2 and g ∈ sl12.
Hence, we only need to show the desired equality when g ∈ sl22.

Conditions Φϕ(xk, f2, h2) = 0 and Φϕ(yk, e2, h2) = 0 yield

ϕ(xk, f2) = 0 = d(xk.f2), ϕ(yk, e2) = 0 = d(yk.e2),
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respectively, for 0 ≤ k ≤ m.
Next conditions Φϕ(xk, e2, f2) = 0 and Φϕ(xk, e2, h2) = 0 gives us ϕ(xk, h2) =

ϕ(yk, f2) and ϕ(xk, e2) = ϕ(yk, h2) for 0 ≤ k ≤ m, respectively. Recall
xk.h2 = yk.f2 and xk.e2 = yk.h2.

Using Φϕ(xk, e2, f1) = 0 one obtain

ϕ(xk+1, e2) = ϕ(yk, f1) = d(yk.f1) = d(yk+1) = d(xk+1.e2)

for 0 ≤ k ≤ m− 1.
One derives equality ϕ(x0, e2) = 1

mϕ(y0, h1) = d(y0) = d(x0.e2) using
Φϕ(x0, e2, h1) = 0.

Similarly, using Φϕ(xk, f1, h2) = 0 one obtain

ϕ(xk+1, h2) = −ϕ(xk, f1) = −d(xk.f1) = −d(xk+1) = d(xk+1.h2)

for 0 ≤ k ≤ m − 1. As for the only undefined missing part one verifies
ϕ(x0, h2) = − 1

mϕ(x0, h1) = −d(x0) = d(x0.h2) using Φϕ(x0, h1, h2) = 0.

Hence, we have proved that ϕ(i, g) = d(i.g) for all i ∈ I1 ⊕ I2, g ∈ sl12 ⊕ sl22
and by Theorem 5.6 in this case we obtain HL2(L1, L1)(−1) = 0.
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