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Abstract. In this paper we classify Leibniz algebras whose associated Lie algebra is four-
dimensional Diamond Lie algebra D and the ideal generated by squares of elements is
represented by one of the finite-dimensional indecomposable D-modules U1

n, U2
n, W 1

n or
W 2

n .

1. Introduction
Leibniz algebras were discovered by A. Bloh in 1965 who called them D-algebras [1]. They
attracted interest after Jean-Louis Loday [2] noticed that the classical Chevalley-Eilenberg
boundary map in the exterior module of a Lie algebra can be lifted to the tensor module which
yields a new chain complex. In fact this complex is well defined for any Leibniz algebra. This
motivated him to introduce the notion of right (equivalently, left) Leibniz algebra, which is
a nonassociative algebra with the right (equivalently, left) multiplication operator being a
derivation. Thus a Leibniz algebra satisfies all defining properties of a Lie algebra except the
antisymmetry of its product.

During the last 20 years the theory of Leibniz algebras has been actively investigated and
numerous papers devoted to the study of these algebras. In fact, many results of theory of Lie
algebras have been extended to Leibniz algebras case. For instance, the classical results on
Cartan subalgebras [3, 4], Engel’s theorem [5], Levi’s decomposition [6], properties of solvable
algebras with given nilradical [7] and others from the theory of Lie algebras are also true for
Leibniz algebras.

Namely, the analogue of Levi’s decomposition for Leibniz algebras asserts that any Leibniz
algebra is decomposed into a semidirect sum of its solvable radical and a semisimple Lie
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algebra. Therefore, the main problem of the description of finite-dimensional Leibniz algebras
consists of the study of solvable Leibniz algebras.

In fact, each non-Lie Leibniz algebra L contains a non-trivial ideal (further denoted by I),
which is the subspace spanned by the squares of elements of the algebra L. Moreover, it is
readily to see that this ideal belongs to the right annihilator of L, that is [L, I] = 0. Note also
that the ideal I is the minimal ideal with the property that the quotient algebra L/I is a Lie
algebra (the quotient algebra is said to be associated Lie algebra to a Leibniz algebra L).

One of the approaches to the investigation of Leibniz algebras is a description of such
algebras whose quotient algebra with respect to the ideal I is a given Lie algebra [8, 9, 10, 11].

The map I × L/I → I defined as (i, x) 7→ [i, x] endows I with a structure of L/I-module.
Considering the direct sum of vector spaces Q(L) = L/I⊕I, then the operation (−,−) defines
the Leibniz algebra structure on Q(L) with multiplication

[x, y] = [x, y], [x, i] = [x, i], [i, x] = 0, [i, j] = 0, x, y ∈ L, i, j ∈ I.

Therefore, for given a Lie algebra G and a G-module M , we can construct a Leibniz algebra
L = G⊕M by the above construction.

In the paper [12] the notion of irreducible Leibniz representation is introduced and it
is shown that there are only two kinds irreducible representations. Namely, one of them
coincides with Lie representation (it said to be Lie representation) and another one has
trivial action on the left side, while the action on the right side is irreducible (it said to be
Leibniz representation). Following these concepts we shall say Leibniz representation (Leibniz
module) for that representation (respectively, module) which has trivial action on the left side.

In this paper we study Leibniz algebras whose associated Lie algebra is the four-dimensional
Diamond Lie algebra D and the ideal I is one of its finite-dimensional indecomposable Leibniz
representations of D which are described in [13].

Actually, for a Leibniz algebra L with associated Diamond Lie algebra D = L/I we could
decompose it into direct sum of vector spaces L = D⊕ I, where D is the preimage of D under
the natural homomorphism φ : L → D. Clearly, the ideal I can be considered as Leibniz D-
module. Taking into account that the ideal I is contained in right annihilator of the algebra
L, the multiplications in L are determined from the products [D,D] and [I,D]. Since I is a
Leibniz module over the Lie algebra D, then the product [I,D] corresponds to a chosen right
Lie D-module. Thus, the main problem of the description of Leibniz algebras with associated
Lie algebra D and with the ideal I chosen by specific right D-module consists to identifying
the product [D,D].

Throughout the paper all vector spaces and algebras are finite-dimensional over the field
of the complex numbers.

2. Preliminaries
In this section we give necessary definitions and preliminary results.

Definition 2.1. An algebra (L, [−,−]) over a field F is called a Leibniz algebra if for any
x, y, z ∈ L, the so-called Leibniz identity[

x, [y, z]
]
=

[
[x, y], z

]
−

[
[x, z], y

]
holds.
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The real Diamond Lie algebra D is a four-dimensional Lie algebra with basis {J, P1, P2, T}
and non-zero relations

[J, P1] = P2, [J, P2] = −P1, [P1, P2] = T.

The complexification of the Diamond Lie algebra: D⊗R C displays the following complex
basis:

{P+ = P1 − iP2, P− = P1 + iP2, T, J},

where i is the imaginary unit, whose nonzero commutators are

[J, P+] = iP+, [J, P−] = −iP−, [P+, P−] = 2iT.

Since throughout the paper we shall consider only complex Diamond algebra, the same
notation D does not lead to confusion.

In the paper [13] the authors construct, for any n ∈ N, a (3n+3)-dimensional Lie module

Vn over the algebra D, which is endowed with a basis {vjk}
j=0,1,2
k=0,··· ,n. In the paper they use the

action D · Vn (the action Vn ·D evidently is defined by the antisymmetric law).
In the Leibniz algebra L = D ⊕ Vn we shall identify the action Vn · D with the product

[Vn, D]. In order to have compatibility instead of the action D ·Vn we will use Vn ·D as follows:

vjk · J = − i
2(n− 2k)vjk, k = 0, . . . , n, j = 0, 1, 2,

vjk · P+ = −(n− k + 1)vj+1
k−1, vj0 · P+ = 0, v2k · P+ = 0, k = 1, . . . , n, j = 0, 1,

vjk · P− = −(k + 1)vj+1
k+1, vjn · P− = 0, v2k · P− = 0, k = 0, . . . , n− 1, j = 0, 1,

v0k · T = i
2(n− 2k)v2k, vjk · T = 0, k = 0, . . . , n, j = 1, 2.

(1)

Remark 2.2. Here we changed T ·v0k = 2i(n−2k)v2k, misprint of [13], to the correct expression
T · v0k = − i

2(n− 2k)v2k.

In order to have the compatibility with the above representations, in the law of Diamond
algebra we use the following table of multiplication (we make a change of basis P ′

+ = P−,
P ′
− = P+):

[J, P+] = −iP+, [J, P−] = iP−, [P+, P−] = −2iT.

In the next proposition two different decompositions of module Vn are presented.

Proposition 2.3 ([13]). Let Vn be the D-module constructed above and let us denote by ⌊x⌋
the integer part of x, then

- if n = 0, then Vn decomposes in the direct sum of three trivial one-dimensional modules.

- If n = 2j, j ∈ N, j ≥ 1, then Vn decomposes into the direct sum Vn = U1
n ⊕ U2

n

of two modules, respectively, of dimension 3(n/2) + 2 and 3(n/2) + 1, given by U1
n =

span{v00, v02k, v12k−1, v
2
0, v

2
2k}k=1,...,⌊n/2⌋ and U2

n = span{v02k−1, v
1
0, v

1
2k, v

2
2k−1}k=1,...,⌊n/2⌋.

- If n = 2j + 1, j ∈ N, j ≥ 0, then Vn decomposes into the direct sum Vn =
W 1

n ⊕ W 2
n of two modules of equal dimension 3n/2, respectively, given by W 1

n =
span{v02k, v12k+1, v

2
2k}k=0,...,⌊n/2⌋ and W 2

n = span{v02k+1, v
1
2k, v

2
2k+1}k=0,...,⌊n/2⌋.

In the paper [13] it is proved that the terms of the above decompositions are
indecomposable D-modules.
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Theorem 2.4. The modules U1
n, U2

n, W 1
n and W 2

n are indecomposable D-modules.

Further, we shall need the result that specifies the simplest case, that is [D,D] ⊆ D, with
some conditions on the ideal I.

Lemma 2.5 ([11]). Let L be a Leibniz algebra such that L/I ∼= D and I a Leibniz D-module.
If there exists a basis {X1, X2, . . . , Xn} of I such that [Xi, J ] = αiXi, αi /∈ {−2; 0; 2}, where
1 ≤ i ≤ n, then [D,D] ⊆ D.

3. Main result
This section is devoted to the study of Leibniz algebras with associated Diamond Lie algebra
and with the condition that the ideal I is one of indecomposable D-modules U1

n, U2
n, W 1

n or
W 2

n .

3.1. Leibniz algebras whose ideal I is the D-module U1
n.

Let {v00, v02k, v12k−1, v
2
0, v

2
2k}k=1,...,n/2 be the basis of module U1

n chosen in Proposition 2.3 with
even n. Then from Proposition 2.3 and action 1 we have the products in the Leibniz algebra
L: 

[v02k, J ] =
i
2(n− 4k)v02k, k = 0, . . . , n2 ,

[v12k−1, J ] =
i
2(n− 4k + 2)v12k−1, k = 1, . . . , n2 ,

[v22k, J ] =
i
2(n− 4k)v22k, k = 0, . . . , n2 ,

[v02k, P+] = (n− 2k + 1)v12k−1, k = 1, . . . , n2 ,

[v12k−1, P+] = (n− 2k + 2)v22k−2, k = 1, . . . , n2 ,

[v02k, P−] = (2k + 1)v12k+1, k = 0, . . . , n2 − 1,

[v12k−1, P−] = 2kv22k, k = 1, . . . , n2 ,

[v02k, T ] = − i
2(n− 4k)v22k, k = 0, . . . , n2 .

(2)

Theorem 3.1. An arbitrary Leibniz algebra with corresponding Lie algebra D and I associated
with D-module defined by (2) admits a basis {J, P+, P−, T, v

0
0, v

0
2k, v

1
2k−1, v

2
0, v

2
2k}k=1,...,n/2,

where n is even and the table of multiplication [D,D] has the following form:

• n = 4s 
[J, P+] = −iP+, [J, P−] = iP−, [P+, P−] = −2iT,

[P+, J ] = iP+, [P−, J ] = −iP−, [P−, P+] = 2iT + 2α1v
2
2s,

[J, T ] = α1v
2
2s [J, J ] = α2v

2
2s, [P+, P+] = α3v

2
2s−2,

[P−, P−] = α4v
2
2s+2.

• n = 4s− 2 

[J, P+] = −iP+, [P+, J ] = iP+ + 2isβ1v
2
2s−2,

[J, P−] = iP−, [P−, J ] = −iP− − 2isβ1v
2
2s,

[P+, P−] = −2iT, [P−, P+] = 2iT + 2β2v
1
2s−1,

[J, J ] = β1v
1
2s−1, [J, T ] = β2v

1
2s−1,

[P+, P+] = β3v
1
2s−3, [P−, P−] = β4v

1
2s+1,

[P+, T ] = 2isβ2v
2
2s−2, [T, P+] = −i(2sβ2 − (s− 1)β3)v

2
2s−2,

[P−, T ] = −2isβ2v
2
2s, [T, P−] = i(4sβ2 − (s− 1)β4)v

2
2s.
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where αi, βi ∈ C, 1 ≤ i ≤ 4.

Proof. We will consider two cases n = 4s and n = 4s− 2.
Let us introduce notation

[J, J ] = a00v
0
0 +

n/2∑
k=1

a02kv
0
2k +

n/2∑
k=1

a12k−1v
1
2k−1 + a20v

2
0 +

n/2∑
k=1

a22kv
2
2k.

Case 1. Let n = 4s. Taking the following change of basis:

J ′ = J +
ia00
2s

v00 +

s−1∑
k=1

ia02k
2s− 2k

v02k +

2s∑
k=s+1

ia02k
2s− 2k

v02k +

2s∑
k=1

ia12k−1

2s− 2k + 1
v12k−1

+
ia20
2s

v20 +
s−1∑
k=1

ia22k
2s− 2k

v22k +
2s∑

k=s+1

ia22k
2s− 2k

v22k,

we can assume that [J, J ] = a02sv
0
2s + a22sv

2
2s.

Lifting from the quotient Lie algebra D to the Leibniz algebra L we have

[J, P+] = −iP+ + b00v
0
0 +

2s∑
k=1

b02kv
0
2k +

2s∑
k=1

b12k−1v
1
2k−1 + b20v

2
0 +

2s∑
k=1

b22kv
2
2k,

[J, P−] = iP− + c00v
0
0 +

2s∑
k=1

c02kv
0
2k +

2s∑
k=1

c12k−1v
1
2k−1 + c20v

2
0 +

2s∑
k=1

c22kv
2
2k,

[P+, P−] = −2iT + d00v
0
0 +

2s∑
k=1

d02kv
0
2k +

2s∑
k=1

d12k−1v
1
2k−1 + d20v

2
0 +

2s∑
k=1

d22kv
2
2k.

Making the change of basis elements as follows:

P ′
+ = P+ + ib00v

0
0 +

2s∑
k=1

ib02kv
0
2k +

2s∑
k=1

ib12k−1v
1
2k−1 + ib20v

2
0 +

2s∑
k=1

ib22kv
2
2k,

P ′
− = P− − ic00v

0
0 −

2s∑
k=1

ic02kv
0
2k −

2s∑
k=1

ic12k−1v
1
2k−1 − ic20v

2
0 −

2s∑
k=1

ic22kv
2
2k,

T ′ = T + i
2(d

0
0v

0
0 +

2s∑
k=1

d02kv
0
2k + (d11 + ib00)v

1
1 +

2s∑
k=2

(d12k−1 + i(2k − 1)b02k−2)v
1
2k−1 + d20v

2
0

+
2s∑
k=1

(d22k + 2ikb12k−1)v
2
2k),

we derive the products

[J, P+] = −iP+, [J, P−] = iP−, [P+, P−] = −2iT.

Considering the chain of equalities

P+ = i[J, P+] = [J, [P+, J ]] = [[J, P+], J ]− [[J, J ], P+],

P− = −i[J, P−] = [J, [P−, J ]] = [[J, P−], J ]− [[J, J ], P−],
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we conclude [P+, J ] = iP+ + ia02s(2s + 1)v12s−1 and [P−, J ] = −iP− − ia02s(2s + 1)v12s+1,
respectively.

We set

[P+, P+] = q00v
0
0 +

2s∑
k=1

q02kv
0
2k +

2s∑
k=1

q12k−1v
1
2k−1 + q20v

2
0 +

2s∑
k=1

q22kv
2
2k,

[P−, P−] = l00v
0
0 +

2s∑
k=1

l02kv
0
2k +

2s∑
k=1

l12k−1v
1
2k−1 + l20v

2
0 +

2s∑
k=1

l22kv
2
2k,

[J, T ] = r00v
0
0 +

2s∑
k=1

r02kv
0
2k +

2s∑
k=1

r12k−1v
1
2k−1 + r20v

2
0 +

2s∑
k=1

r22kv
2
2k.

Applying the Leibniz identity to the following triples we get further constraints on the
products.

Leibniz identity Constraint

{P+, J, P+} ⇒ a02s = q00 = q20 = 0, q12k−1 = 0, 1 ≤ k ≤ 2s, q02k = q22k = 0, k ̸= s− 1, s > 1

{P−, J, P−} ⇒ l00 = l20 = 0, l12k−1 = 0, 1 ≤ k ≤ 2s, l02k = l22k = 0 = 0, k ̸= s+ 1.

Thus, we obtain

[J, J ] = a22sv
2
2s, [P+, J ] = iP+, [P−, J ] = −iP−,

[P+, P+] = q02s−2v
0
2s−2 + q22s−2v

2
2s−2, [P−, P−] = l02s+2v

0
2s+2 + l22s+2v

2
2s+2.

Note that for s = 1, we have [P+, P+] = q00v
0
0 + q20v

2
0, which agrees with the case s > 1.

Considering the Leibniz identity to the following triples implies the following constraints:

Leibniz identity Constraint

{J, T, J} =⇒ [J, T ] = r02sv
0
2s + r22sv

2
2s,

{P+, J, P−} =⇒ [T, J ] = 0,

{J, P+, T} =⇒ [P+, T ] = i(2s+ 1)r02sv
1
2s−1,

{J, P−, T} =⇒ [P−, T ] = −i(2s+ 1)r02sv
1
2s+1.

Taking into account that [P+, P−] = −2iT in the following chain of equalities

−2i[J, T ] = [J, [P+, P−]] = [[J, P+], P−]− [[J, P−], P+] = −i[P+, P−]− i[P−, P+],

we deduce [P−, P+] = 2iT + 2r02sv
0
2s + 2r22sv

2
2s.

In order to identify the products [T, P+] and [T, P−], we introduce the notations:

[T, P+] = m0
0v

0
0 +

2s∑
k=1

m0
2kv

0
2k +

2s∑
k=1

m1
2k−1v

1
2k−1 +m2

0v
2
0 +

2s∑
k=1

m2
2kv

2
2k,

[T, P−] = t00v
0
0 +

2s∑
k=1

t02kv
0
2k +

2s∑
k=1

t12k−1v
1
2k−1 + t20v

2
0 +

2s∑
k=1

t22kv
2
2k.
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In a similar way as above we obtain

Leibniz identity Constraint

{T, P+, J} =⇒ [T, P+] = m1
2s−1v

1
2s−1,

{T, P−, J} =⇒ [T, P−] = t12s+1v
1
2s+1,

{P+, P−, T} =⇒ [T, T ] = −s(2s+ 1)r02sv
2
2s,

{P+, P+, T} =⇒ q02s−2 = −(s+ 1)(2s+ 1)r02s,

{P+, P+, P−} =⇒ m1
2s−1 = −i/2(2s+ 1)(2s2 + s+ 1)r02s,

{P−, P−, T} =⇒ l02s+2 = −(2s+ 1)(s+ 1)r02s,

{T, P+, P−} =⇒ t12s+1 = −i/2(2s+ 1)(2s2 + s+ 3)r02s.

From the restrictions, we derive

[P+, P+] = −(s+ 1)(2s+ 1)r02sv
0
2s−2 + q22s−2v

2
2s−2,

[T, P+] = −i/2(2s+ 1)(2s2 + s+ 1)r02sv
1
2s−1,

[P−, P−] = −(2s+ 1)(s+ 1)r02sv
0
2s+2 + l22s+2v

2
2s+2,

[T, P−] = −i/2(2s+ 1)(2s2 + s+ 3)r02sv
1
2s+1.

Finally, if we apply the Leibniz identity to the triple of elements {P−, P+, P−}, we obtain
r02s = 0. Thus, by assuming (r22s, a

2
2s, q

2
2s−2, l

2
2s+2) = (α1, α2, α3, α4), we get the first family of

the theorem.

Case 2. Let n = 4s− 2. Taking the change of basis in the following form:

J ′ = J +
ia00

2s− 1
v00 +

2s−1∑
k−1

ia02k
2s− 2k − 1

v02k +
s−1∑
k=1

ia12k−1

2s− 2k
v12k−1

+
2s−1∑
k=s+1

ia12k−1

2s− 2k
v12k−1 +

ia20
2s− 1

v20 +
2s−1∑
k=1

ia22k
2s− 2k − 1

v22k,

we can assume that [J, J ] = a12s−1v
1
2s−1.

Analogously to the previous case, we can get the products

[J, P+] = −iP+, [J, P−] = iP−, [P+, P−] = −2iT.

Verifying the Leibniz identity on triples we have the following restrictions:

Leibniz identity Constraint

{J, J, P+} =⇒ [P+, J ] = iP+ + 2isa12s−1v
2
2s−2,

{J, J, P−} =⇒ [P−, J ] = −iP− − 2isa12s−1v
2
2s.
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We put

[P+, P+] = q00v
0
0 +

2s−1∑
k=1

q02kv
0
2k +

2s−1∑
k=1

q12k−1v
1
2k−1 + q20v

2
0 +

2s−1∑
k=1

q22kv
2
2k,

[P−, P−] = l00v
0
0 +

2s−1∑
k=1

l02kv
0
2k +

2s−1∑
k=1

l12k−1v
1
2k−1 + l20v

2
0 +

2s−1∑
k=1

l22kv
2
2k,

[J, T ] = r00v
0
0 +

2s−1∑
k=1

r02kv
0
2k +

2s−1∑
k=1

r12k−1v
1
2k−1 + r20v

2
0 +

2s−1∑
k=1

r22kv
2
2k.

From the Leibniz identity, we have

Leibniz identity Constraint

{P+, J, P+} =⇒ [P+, P+] = q12s−3v
1
2s−3,

{P−, J, P−} =⇒ [P−, P−] = l12s+1v
1
2s+1,

{J, J, T} =⇒ [J, T ] = r12s−1v
1
2s−1,

{P+, J, P−} =⇒ [T, J ] = 0,

{J, P+, T} =⇒ [P+, T ] = 2isr12s−1v
2
2s−2,

{J, P−, T} =⇒ [P−, T ] = −2isr12s−1v
2
2s,

{J, P+, P−} =⇒ [P−, P+] = 2iT + 2r12s−1v
1
2s−1.

Setting

[T, P+] = m0
0v

0
0 +

2s−1∑
k=1

m0
2kv

0
2k +

2s−1∑
k=1

m1
2k−1v

1
2k−1 +m2

0v
2
0 +

2s−1∑
k=1

m2
2kv

2
2k,

[T, P−] = t00v
0
0 +

2s−1∑
k=1

t02kv
0
2k +

2s−1∑
k=1

t12k−1v
1
2k−1 + t20v

2
0 +

2s−1∑
k=1

t22kv
2
2k,

and applying the Leibniz identity to the following triples of elements:

{T, P+, J}, {T, P−, J}, {P+, P−, T}, {P+, P+, P−}, {T, P+, P−}, {P−, P+, P−},

we derive

[T, P+] = (i(s− 1)q12s−3 − 2isr12s−1)v
2
2s−2,

[T, P−] = (4isr12s−1 − i(s− 1)l12s−2)v
2
2s,

[T, T ] = 0.

Finally, by denoting (a12s−1, r
1
2s−1, q

1
2s−3, l

1
2s+1) = (β1, β2, β3, β4), we have the second

family.
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3.2. Leibniz algebras whose ideal I is the DC-module U2
n.

Suppose that the ideal I is defined as a Leibniz D-module by the irreducible representation
U2
n and {v02k−1, v

1
0, v

1
2k, v

2
2k−1}k=1,...,n/2 for even n is the basis of I chosen as in Proposition

2.3. Then the products [I,D] have the form:

[v02k−1, J ] =
i
2(n− 4k + 2)v02k−1, k = 1, . . . , n2 ,

[v12k, J ] =
i
2(n− 4k)v12k, k = 0, . . . , n2 ,

[v22k−1, J ] =
i
2(n− 4k + 2)v22k−1, k = 1, . . . , n2 ,

[v02k−1, P+] = (n− 2k + 2)v12k−2, k = 1, . . . , n2 ,

[v12k, P+] = (n− 2k + 1)v22k−1, k = 1, . . . , n2 ,

[v02k−1, P−] = 2kv12k, k = 1, . . . , n2 ,

[v12k, P−] = (2k + 1)v22k+1, k = 0, . . . , n2 − 1,

[v02k−1, T ] = −i/2(n− 4k + 2)v22k−1, k = 1, . . . , n2 .

Theorem 3.2. An arbitrary Leibniz algebra with corresponding Lie algebra D and with the
ideal I defined as a Leibniz D-module U2

n admits a basis {J, P+, P−, T, v
0
2k−1, v

1
0, v

1
2k, v

2
2k−1}k=1,...,n/2,

where n is even such that the table of multiplication [D,D] has the following form:

• n = 4s 

[J, P+] = −iP+, [P+, J ] = iP+ + i(2s+ 1)γ1v
2
2s−1,

[J, P−] = iP−, [P−, J ] = −iP− − i(2s+ 1)γ1v
2
2s+1,

[P+, P−] = −2iT, [P−, P+] = 2iT + 2γ2v
1
2s,

[J, J ] = γ1v
1
2s, [J, T ] = γ2v

1
2s,

[P+, P+] = γ3v
1
2s−2, [P−, P−] = γ4v

1
2s+2,

[P+, T ] = i(2s+ 1)γ2v
2
2s−1, [T, P+] = −i((2s+ 1)γ2 − (2s−1)γ3

2 )v22s−1,

[P−, T ] = −i(2s+ 1)γ2v
2
2s+1, [T, P−] = i(2(2s+ 1)γ2 − (2s−1)γ4

2 )v22s+1,

• n = 4s− 2
[J, P+] = −iP+, [J, P−] = iP−, [P+, P−] = −2iT,

[P+, J ] = iP+, [P−, J ] = −iP−, [P−, P+] = 2iT + 2δ1v
2
2s−1,

[J, T ] = δ1v
2
2s−1 [J, J ] = δ2v

2
2s−1, [P+, P+] = δ3v

2
2s−3,

[P−, P−] = δ4v
2
2s+1,

where γi, δi ∈ C, 1 ≤ i ≤ 4.

Proof. Let us denote

[J, J ] =

n/2∑
k=1

a02k−1v
0
2k−1 + a10v

1
0 +

n/2∑
k=1

a12kv
1
2k +

n/2∑
k=1

a22k−1v
2
2k−1.

In a similar way to the proof of Theorem 3.1 we will consider the cases n = 4s and
n = 4s− 2.
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Case 1. Let n = 4s. Taking the change of basis elements as follows:

J ′ = J +

2s∑
k=1

ia02k−1

2s− 2k + 1
v02k−1 +

ia10
2s

v10 +

s−1∑
k=1

ia12k
2s− 2k

v12k +

2s∑
k=s+1

ia12k
2s− 2k

v12k

+
2s∑
k=1

ia22k−1

2s− 2k + 1
v22k−1,

we can assume that [J, J ] = a12sv
1
2s.

Applying similar arguments as in the proof of Theorem 3.1, we derive

[J, P+] = −iP+, [J, P−] = iP−, [P+, P−] = −2iT.

We set

[P+, P+] =
2s∑
k=1

q02k−1v
0
2k−1 + q10v

1
0 +

2s∑
k=1

q12kv
1
2k +

2s∑
k=1

q22k−1v
2
2k−1,

[P−, P−] =

2s∑
k=1

l02k−1v
0
2k−1 + l10v

1
0 +

2s∑
k=1

l12kv
1
2k +

2s∑
k=1

l22k−1v
2
2k−1,

[J, T ] =

2s∑
k=1

r02k−1v
0
2k−1 + r10v

1
0 +

2s∑
k=1

r12kv
1
2k +

2s∑
k=1

r22k−1v
2
2k−1.

Applying the Leibniz identity to the following triples of elements:

{J, P+, J}, {J, P−, J}, {P+, J, P+}, {P−, J, P−}, {J, J, T}, {P+, J, P−},

we deduce restrictions which imply the following expressions for the products

[P+, J ] = iP+ + ia12s(2s+ 1)v22s−1, [P−, J ] = −iP− − ia12s(2s+ 1)v22s+1,

[P+, P+] = q12s−2v
1
2s−2, [P−, P−] = l12s+2v

1
2s+2, [J, T ] = r12sv

1
2s, [T, J ] = 0.

Moreover, we have

Leibniz identity Constraint

{J, P+, T} =⇒ [P+, T ] = ir12s(2s+ 1)v22s−1,

{J, P−, T} =⇒ [P−, T ] = −ir12s(2s+ 1)v22s+1,

{J, P+, P−} =⇒ [P−, P+] = 2iT + 2r12sv
1
2s.

We also denote

[T, P+] =

2s∑
k=1

m0
2k−1v

0
2k−1 +m1

0v
1
0 +

2s∑
k=1

m1
2kv

1
2k +

2s∑
k=1

m2
2k−1v

2
2k−1,

[T, P−] =

2s∑
k=1

t02k−1v
0
2k−1 + t10v

1
0 +

2s∑
k=1

t12kv
1
2k +

2s∑
k=1

t22k−1v
2
2k−1.
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Applying the Leibniz identity to the elements {T, P+, J}, {T, P−, J}, {P+, P−, P−}, we get
[T, P+] = m0

2s−1v
0
2s−1 +m2

2s−1v
2
2s−1,

[T, P−] = t02s+1v
0
2s+1 + t22s+1v

2
2s+1,

[T, T ] = 0.

Finally, we have

Leibniz identity Constraint

{P+, P+, P−} =⇒ m0
2s−1 = 0, m2

2s−1 = 1/2i(2s− 1)q12s−2 − i(2s+ 1)r12s,

{T, P+, P−} =⇒ t02s+1 = 0,

{P−, P+, P−} =⇒ t22s+1 = 2i(2s+ 1)r12s − 1/2i(2s− 1)l12s+2.

Denoting the parameters (a12s, r
1
2s, q

1
2s−2, l

1
2s+2) by (γ1, γ2, γ3, γ4), we obtain the first family

of the theorem.

Case 2. Let n = 4s−2. The second family of the theorem is obtained by applying similar
arguments as in the previous case.

3.3. Leibniz algebras whose ideal I is the Leibniz D-module either W 1
n or W 2

n .
Let L be a Leibniz algebra such that the ideal I is defined as a Leibniz D-module by
indecomposable Lie representation W 1

n of the algebra D [13]. Then one can assume that
I = span{v02k, v12k+1, v

2
2k}k=0,...,⌊n/2⌋ where n is odd and

[v02k, J ] =
i
2(n− 4k)v02k, k = 0, . . . , ⌊n/2⌋,

[v12k+1, J ] =
i
2(n− 4k − 2)v12k−1, k = 0, . . . , ⌊n/2⌋,

[v22k, J ] =
i
2(n− 4k)v22k, k = 0, . . . , ⌊n/2⌋,

[v02k, P+] = (n− 2k + 1)v12k−1, k = 1, . . . , ⌊n/2⌋,
[v12k+1, P+] = (n− 2k)v22k, k = 1, . . . , ⌊n/2⌋,
[v02k, P−] = (2k + 1)v12k+1, k = 0, . . . , ⌊(n− 1)/2⌋,
[v12k+1, P−] = (2k + 2)v22k+2, k = 0, . . . , ⌊n/2⌋,
[v02k, T ] = −i/2(n− 4k)v22k, k = 0, . . . , ⌊n/2⌋

(3)

Let now the ideal I defined as a Leibniz D-module by the indecomposable
Lie representation W 2

n of the algebra D [13]. Then one can assume I =
span{v02k+1, v

1
2k, v

2
2k+1}k=0,...,⌊n/2⌋, where n is odd and

[v02k+1, J ] =
i
2(n− 4k − 2)v02k+1, k = 0, . . . , ⌊n/2⌋,

[v12k, J ] =
i
2(n− 4k)v12k, k = 0, . . . , ⌊n/2⌋,

[v22k+1, J ] =
i
2(n− 4k − 2)v22k+1, k = 0, . . . , ⌊n/2⌋,

[v02k+1, P+] = (n− 2k)v12k, k = 1, . . . , ⌊n/2⌋,
[v12k, P+] = (n− 2k + 1)v22k−1, k = 1, . . . , ⌊n/2⌋,
[v02k+1, P−] = (2k + 2)v12k+2, k = 0, . . . , ⌊(n− 1)/2⌋,
[v12k, P−] = (2k + 1)v22k+1, k = 0, . . . , ⌊n/2⌋,
[v02k+1, T ] = −i/2(n− 4k − 2)v22k+1, k = 0, . . . , ⌊n/2⌋.

(4)
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Theorem 3.3. Let L be a Leibniz algebra with associated Diamond Lie algebra D and the
ideal I is defined as a Leibniz D-module by indecomposable Lie representation either W 1

n or
W 2

n . Then
[D,D] ⊆ D.

Proof. The proof of the theorem follows from the products (3)–(4) and Lemma 2.5.
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