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Abstract. Recently [Phys. Rev. B 91, 125433 (2015)] we derived a general formula for the
time-dependent quantum electron current through a molecular junction subject to an arbitrary
time-dependent bias within the Wide Band Limit Approximation (WBLA) and assuming a
single particle Hamiltonian. Here we present an efficient numerical scheme for calculating the
current and particle number. Using the Padé expansion of the Fermi function, it is shown that all
frequency integrals occurring in the general formula for the current can be removed analytically.
When the bias in the reservoirs is assumed to be sinusoidal it is possible to manipulate the
general formula into a form containing only summations over special functions. To illustrate
the method, we consider electron transport through a one-dimensional molecular wire coupled
to two leads subject to out-of-phase biases. We also investigate finite size effects in the current
response and particle number that result from the switch-on of this bias.

1. Introduction
The Landauer-Biittiker (LB) formalism has for some time provided a reliable method for
modelling coherent transport through molecular junctions [1, 2|. In the original formulation,
this method enabled computation of the current in the leads coupled to a molecular region C,
when a bias in at least one of the leads causes a constant shift in the Fermi energies of the
leads. Work done with the LB formalism has mainly focused on the calculation of steady-
state properties, corresponding to a time regime that consigns the bias switch-on time to the
distant past [3]. The LB expressions for the current and quantum noise may be derived from
the Nonequilibrium Green’s Function (NEGF) formalism, which is a more general alternative to
the S-Matrix approach [4, 5]. This requires the solution of the Kadanoff-Baym equations for the
lesser Green’s function of the molecular region [4], from which the electric current in the leads
and electron number in the molecule may be extracted. When the bias is time-independent, all
GFs are functions of the time difference, and hence it is possible to work purely in the frequency
domain when solving for the components that enter the expression for the current.

However, recent studies have opened up the possibility of calculating the time-dependent (TD)
current in a multilevel nanojunction using a closed integral formula; expressions that include the
transient effects of the switch-on (and hence the system preparation) have been derived for
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the cases of a constant [4, 6, 7| and time-dependent [8] bias. Common to both approaches is
the assumption of the Wide-Band Limit Approximation (WBLA), which neglects the detailed
electronic structure of the leads and renders the Kadanoff-Baym equations for the lesser GF
analytically tractable. Computationally, the main cost of the method we presented in 8| lies
with the evaluation of several integrals in the (w,t) plane. The purpose of this paper is to present
an efficient computational scheme for evaluating these integrals with no loss of accuracy making
consideration of complex multi-level and multi-terminal systems within the WBLA numerically
possible.

The structure of this paper is as follows: in Section 2, we introduce the model of the generic
switch-on problem and the basic assumptions involved in the WBLA. In addition we prove a
continuity equation for the current formula derived in [8|. In Section 3, the formula for the current
is re-expressed using the Padé expansion of the Fermi function to remove all frequency integrals,
forming the basis for our numerical implementation. Section 4 presents numerical results for
the current through a molecular wire, modelled with a simple tight-binding Hamiltonian. In
this implementation, expressions are worked out for a sinusoidal bias whereby Bessel function
expansions are used to remove all t—integrals in the TD current. This enables simulations of the
transport resulting from any combination of sinusoidal biases in the leads, including those which
contain a symmetry-breaking phase. Furthermore it enables us to identify some novel finite size
effects on the dynamics and to study the conservation of charge as the transient current dies out.

2. The Model

2.1. Hamiltonian and GF Components

The NEGF formalism is a method for calculating the evolution in time of ensemble averages,

following an event at a particular time ¢y which breaks the physical symmetry of the system

between times t = +o00. In quantum transport one is primarily concerned with calculations of

the time-dependent current following the switch-on of a bias in one of the leads. Here we model

this switch-on by adding a spatially constant time-dependent shift to the lead energy levels.
We will in general be concerned with the following Hamiltonian:

ﬁ (t) = nga (t) &Ladka + vanCZanZn + Z [Vm,kadjnczka + Vka,mCZLaCim} (1)
ka mn

m,ka

Here, a?koé, dp, and dNL o djn are annihilation and creation operators of leads and central system
electronic states, where for simplicity spin degrees of freedom are neglected. We collect elements
of this Hamiltonian into a matrix consisting of ‘blocks’ corresponding to each of the physical
subsystems it describes. The first term is a Hamiltonian of the lead states k belonging to each
lead . The second term is the Hamiltonian of the molecule coupled to the lead; it contains
inter-molecular hopping matrix elements V,,, between the m and n molecular orbitals, defining
a molecular Hamiltonian matrix ‘block’ hoe with elements V,,,,. The third term describes the
coupling of the molecule to the leads, and defines the a — C' ‘block’ of the Hamiltonian matrix,
h,c with elements Vi . The switch-on problem is specified by assigning values to the matrix
elements of H (t) at times before and after .

We assume that, prior to tg, the system has equilibrated with lead-molecule couplings present
in the Hamiltonian H (t<ty) = Hy, so that Hy is as in Eq. (1) with time-independent lead state
energies e, (t < to) = €pa- The system is therefore described by an equilibrium density operator
po = Z_lefﬁ(Hof"N), where Z is the partition function, N the number operator, 3 = 1/kpT
the inverse temperature and p the chemical potential. At times following the switch-on, the lead
energies acquire a time-dependent shift, e, (¢ > tg) = €go + Va (t), where the function V, (¢)
is arbitrary. This is an example of a partition-free approach [9, 6, 8] to the switch-on problem,
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as the system Hamiltonian is not divided into decoupled subregions prior to tg. Partitioned
approaches [5] add the lead-molecule coupling at the switch-on time and therefore cannot be
expected to give a physically meaningful transient.

The problem of calculating the current in response to this kind of switch-on is mapped to
the solution of a set of coupled integro-differential equations for Green’s Functions (GFs) defined
on a complex time contour 7, which we refer to as the Konstantinov-Perel’ contour [10]. One
then solves for various components of the two-time GF of the central region C'C' ‘block’, whose
rigorous definition may be found elsewhere [4, 8]. Here we simply note that the retarded GF
satisfies the following equation of motion:

t

d _ _
<zdt1 — hcc> Gie (t1,t2) = 1eed (t —t2) + / Ao (t1, 1) G (E t2) 2)
to

On the right-hand side of this expression, one encounters the retarded component of the
embedding self-energy,

_ ; i
B (11, = S0 [ G0 | 0) = (o) )
We have in this expression mtroduced the mn component of the level width matrix in lead «
Fa,mn (w) =27 Z Tm,kaTka,n5 (w - 6koz) (4)
k

which forms a Hilbert transform pair with A m, (w). In addition we have defined the phase
factor:

o (s t2) = / 4V (F) (5)

In the WBLA, one assumes that I'qmp (w) is replaced with a frequency-independent value
Lamn = Lamn (55 ), where £ is the equilibrium Fermi energy of lead o [5]. This has the
effect of mapping Eq. (2) onto an expression which is analytically tractable, resulting in the

following exact expression:
dw -1 d
Gro(tnta) = [ 52640 (1o —ff) " = [0 0GEo @) (0)
27 271'
In (6), hcfc{c =hco — %I‘ =hge— %ZI‘Q is an effective Hamiltonian of the central region, whose

eigenvalues correspond to unstable eq;genmodes of the molecular structure, which have acquired
a finite lifetime due to the presence of the leads. All other components of the GF can also be
explicitly calculated in the time domain [8]. In particular, the greater and lesser GFs can be
expressed as

[ dw
GZc (i t2) = ¢2/27rf (F (w = 1)) Y _Sa (t1,to;w) TuS}, (t2, to; w) (7)
where we make the definition
t ) eFF\ v _
S. (t,to;w) =~ thCJf(t to) [ CC( ) / dfefl(wl—hcfcf)(tfto)e—izpa(tto) (8)
to

and note that all information concerning the time-dependent bias V,, (t) of lead « is to be found
in the phase factors 1.
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2.2. Current and Continuity Equation
In [8], results were presented for the transport through a quantum dot using direct numerical
integration to evaluate the current at each time ¢ > tg. The current in lead « is defined as the

time derivative of the average charge in that lead, I, (t) = ¢ <d]\;c;(t)> and may be expressed in

the followmg rather compact form (taking electron charge ¢ = —1 and a spin degeneracy of 2,
ie. Ny =2x deadka ):

I, (t) = jr/dwf (w—pu) Tre [2Re ieiw(t*to)eiw“(t’tO)SaI‘a} — I‘QZSBI‘BSE 9)
B

Here, the S, are given by Eq. (8). The molecule which has been sandwiched between macroscopic
leads is fundamentally an open quantum system, so the total charge in the molecular region is
not necessarily conserved even though the total amount of charge in the molecular region plus
that of all the leads is fixed for all times. This is a condition automatically satisfied by the
NEGF formalism [4]. The condition for local charge conservation is that the sum of all currents
measured in the leads of a multiterminal device is equal to zero:

> I (t)=0 (10)

«
This condition states that the rate of charge entering the molecular region is balanced by the
rate of charge leaving it. One should now recall that there is no direct coupling between leads,

so that all charge transfer between leads is mediated by the central region, and also that the
dNa( )

definition of the current in lead « was given as I, (t) = q< >, i.e. it was given as the rate

of increase of charge in this lead. Eq. (10) is simply a statement of the condition that if charge
increases in one lead connected to the molecule, then this increase is compensated exactly by a
net decrease of charge from the other leads making up the junction. The total amount of charge
in the molecular region at any given time is directly related to the lesser GF:

Ne(t) = —2iTre [Gae (1) = Z/dwf w— 1) Trc: [85 (1 10: ) TS (1, 10:1)] (11)

The time derivative of the charge number dNe(®) 5 the central region has been referred to as the

displacement current in the literature [4]. To make precise the relation between this quantity and
the currents measured in the leads, we take the time-derivatives of the matrix Sg = Sg (¢, to; w)
and its complex conjugate, e.g.

s
dt

This expression, along with its complex conjugate, is substituted into the derivative of N¢ in
Eq. (11) to give

_ heffsﬁ e w(t—to) ,~ita(t,to) (12)

ngt(t) = iza:/dwf(w—,u)Trc (13)

If ST
hgc_he

2Re [ieiw(tito)eiwa(t’to)S@F@] - Z FaSgFgSTB

where we use the fact that —zZI‘a = —iI'. If we then sum over lead indices in

the expression (9), the following theorem is established:



Progress in Non-equilibrium Green’s Functions (PNGF VI) IOP Publishing

Journal of Physics: Conference Series 696 (2016) 012017 doi:10.1088/1742-6596/696/1/012017
dN¢ (t)

—_— = I, (t 14

Tl (14)

This is a statement of global charge conservation in the nanojunction. When the bias in every
lead is constant, (11) reduces to the formula for the particle number given in [6]. In the long time
limit the number of charges on the molecule is constant in time, i.e. an ideal stationary state is
reached; hence the condition for local charge conservation (10) is trivially satisfied in this case.
Although the condition of global charge conservation (14) is never violated, physical situations
exist in which the condition of local charge conservation in the molecular (central) region of a
nanojunction (10) is then violated, i.e. dN¢(t)/dt # 0.

3. Pade Expansion of the Time-Dependent Current

3.1. Ezact Formula for the Current: Hurwitz-Lerch Functions

In previous work [8], numerical integration was used to compute the current formula (9) at
different times for a single level system. We now seek to extend this work to a numerical method
that facilitates time-dependent transport calculations in systems of real experimental interest,
for instance carbon nanotube transistors [11|. To proceed with a numerical implementation of
Egs. (9) and (11), one can introduce the right and left eigenproblems for the renormalized

Hamiltonian matrix heCfo [12]:

hed o)) = & lefl) and (pf |Gl =& (o] (15)

The eigenenergies &; contain an imaginary part that is strictly negative (as I' is positive-definite),
and the same value of &; corresponds to each of the left and right eigenvectors. Using the
idempotency property

ZW —I= ZW (16)

ALY 7 (#F 1 oh)

the formula (9) can be put into the form:

<4pﬂ T, ‘gpf> <‘€iwa (t,to) pi(z+p—&;)(t—to)

1
L = % / do f (2) 4 2Re B (17)
e <%L ‘¢f> T+ p—Ej
t R R\ / L L
Lo |of) (of|T
+/dt€iwa(t’ﬂei(x+“_aj)(t—ﬂ — Z <<pk ‘ i > <<p] o |(pk>€*i(€j*51§)(t7to)
g (e [el) el leh)
1 7 [ eivs(Eto) pilztu—ep)(i—to)
X = - + dt |1 — 4+ c.c; k
(z+p—&)(z+p—cp) / T4 p—Ej e
tot
+/ dt / df e~ () gilwtu—2;)(I—to) gi(w+n—8; ) (7 —to)
to to

where f(x) is the Fermi function and c.c;j 1 denotes the complex conjugate of the preceding
term with indices j and k exchanged. We therefore reduce I, (t) to a sum of integrals over scalar
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functions in the (x,t) plane. One integral whose structure is repeated throughout (17) can be
performed analytically, using a contour integral over a semi-circular contour in the upper-half of
the complex plane:

ei(@—(&—m))(t—to) x L 2n 1 B
_ =5 (t=to) ,—i(g;—p)(t—to) — = (t—to) - =
= —¢ B J )] B 1 — —
/dx x— (& —n) ‘ ‘ (e RERETA “)>
(18)
Here we have introduced the so-called Hurwitz-Lerch Transcendent ® [13]:

o fjizn 19
(2,8,a) = 2ntay (19)

The formula (18) enables to replace several frequency integrals with a fast-converging series
expansion. We note in passing that, if one follows the steps in the formal integration of the
lesser GF G5, (t1,t2) which enabled the derivation of Eq. (9) in [8], one uses a well-known
[4] transformation of Matsubara summations into frequency integrals when evaluating a set
of convolution integrals taken along the vertical branch of the Konstantinov-Perel’ contour.
However, these steps can be omitted altogether, and a direct route can be taken to an expression
for I, (t) in terms of ® which retains the Matsubara summation at all stages.

3.2. Remowal of Frequency Integrals: Padé Expansion
The Padé approximation to the Fermi function is a series expansion whose terms possess a simple
pole structure [14, 15, 16]:

11 1 !
W= =s Nilgloozm (596 TiG e iCl) .

This is identical in structure to the Matsubara expansion, which has parameter values 7, = 1
and ¢ = 7 (20 — 1), but it can be shown to converge much more quickly than the Matsubara
expansion as N, increases [15, 16]. Unlike the Matsubara expansion, in which the poles are
spaced at constant intervals of 2 along the imaginary axis, the poles i¢;//3 in the Padé expansion
are spaced unevenly along the imaginary axis, and the prefactors n; are all real and positive-
valued. In practice, the expansion fy(z) truncated at some finite value of N, is used, with N,
chosen such that for values of L > ¢, where € denotes the typical energy scale of the problem,
the deviation 0 fn (L) = [f (z) — fn (2)[g,—r < 107F, where p can be chosen to give arbitrary
accuracy [15, 16, 17]. The rate of convergence of the Padé expansion to the Fermi function at
all energies increases as the temperature is increased.

The expansion (20) is substituted into (17), resulting in z-integrals that can be evaluated
analytically with the residue theorem, for example:

N,
. 2 L Gy
def(z) et = ls(t =) == lim e 5 (=) 21
[zt @) =D -5 Jm > (21)

Using this method and the identity (18) one finally obtains an expression for the current in lead
« that is asymptotically exact (as N — 00), and which has all frequency integrals eliminated:
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1 <90' ’ Ly (] > . . _
I ()= 237 |2Re [ AT (gt i@ (5, (2, - ) (22)
™ <s0§ | wf>
N, ot
_zp: ZWlWZ/dte—i(a‘j—u—i%)(t—ﬂeiwa(t,ﬂ
= P to
R R L L 1 B (=. 1 B_(z*
Z(sok Ty |¢) > <90j ‘ s |er) i) o) | (5 — 27 (55 — W) -V (5 + 557 (& — M))
— e =. =%
5% (eF1ef) (oF | oh) .

t
/ df [—ie Lm0 (5, — (25 — 1)) + i

to

Np b

. z (o \(F e o g _ < p

"‘Z 27%%1 /dtdtlez(sju)(tto)e—z(ek—u)(t ~to) ;i (t¥) [0 (f—7) BT g (¥ -7 B0 E)]
=1 o

Here we have introduced the digamma function V¥, defined as the logarithmic deriva-
tive of the complex gamma function [5], and the simplified notation ®(8,z) =

2w
exp (_% (t— t0)> i) (e_F(t_tO), 1, % + 267’;) Importantly, the difference of two digamma func-
tions appearing in the expression for I,(t) can be converted into a well converging numerical
series thanks to the property:

U (21) — W (22) _ i 1 (23)

21— 22 (n+z1)((n+2)

The general result (22) forms the basis for all subsequent numerical work involving the
calculation of the current response to an arbitrary time-dependent bias. In practice, the time
integrals may be performed numerically or removed analytically given the assumption of a
particular functional form for V,, (¢). Several of the decaying modes in the current can be
directly identified by inspection of (22), although the exact nature of its long-time behaviour
depends on the bias chosen. In particular, if we separate out the real and imaginary parts of
the complex eigenvalues, &; = \; — i7;, we see that modes appearing in the single summation
decay as e 7i(t=%0) whereas the prefactor governing the decay of modes in the double sum is
e~ (it m)(E=t0)  This defines a timescale of 7 = Max{1/v;} as the time taken for transient
behaviour to vanish following the switch-on.

4. Results

We shall now apply the method which was outlined in Section 3 to a molecular wire coupled to
two leads, illustrated schematically in Fig. 1(a). We describe this system using a tight-binding
model for the wire with nearest-neighbor hopping, as described in [18, 19]. Specifically, we assume
that the leads are connected by a wire of 5 sites, with one state per site, and that the interaction
of the chain orbitals with those in the leads is only via the end sites. Within the WBLA, this
translates into the condition that only the I'11 and I's; elements in the level-width matrix are
non-zero and are given by I'yy = 27 | |Vi1]25 (EIE — €iL) and T'ss = 27> \VNj\QcS (sg - sz),

icL jER

respectively. For simplicity, we assume that for each site in the chain there is a single energy level,
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so that effectively we are describing a chain of quantum dots coupled to each other with a nearest-
neighbor hopping, similarly to the system studied in [20], resulting in a tridiagonal molecular
Hamiltonian matrix hge, with elements [hCC]k,k = F and [hCC]k,k-H = [hC’C}k-H,k = T
Additionally, we choose the chemical potential i to be zero.

We now focus on the case of a sinusoidal AC bias turned on in each lead, with a frequency,
amplitude, constant part and phase shift that depends upon the lead:

Vi (£) = Vi + A cos (Qa (t — to) + da) (24)

This enables us to remove analytically all the remaining integrals in (22), by use of the identity:

oo
eWaltitz) — oiVa(ti—t2) Z J, (AO‘> Js <Aa> 11 =8)¢a oirQa (t1—to) ,—i5Qa (t2—t0) (25)
Qq Qq
r,8=—00

where J, denotes a Bessel function of the first kind of order r. When Eq. (25) is substituted into
(22), the single and double time integrals in (22) can be removed analytically and the problem
of calculating the time-dependent current response is reduced to a simple embedded summation
over left /right eigenvectors, the Padé parameters and Bessel functions. For the special case of the
sinusoidal bias (24), this summation can be expressed entirely in terms of the special functions
(19) and (23). We confirm that in the case of a single quantum dot our method reproduces
exactly the I — t characteristic curves published in [8], which were obtained by direct numerical
integration of (9).

In this work, we apply the bias (24) to the leads L and R in the system shown in Fig. 1(a). The
amplitudes A, and constant bias shifts V, are identical for each lead, as is the driving frequency
of the bias, {2,. The physical symmetry of this transport problem is then broken by a relative
phase-shift of ¢p = —7/2 of V (t) with respect to Vi, (t), whose phase is fixed at ¢, = 0. The
tridiagonal central region Hamiltonian has all diagonal terms equal to 1, and all off-diagonal terms
7 = 0.1. Other parameters in the model are V;, =5 = Vg, A, =4 = Agr, I'11 = 0.5, I'ss = 0.5,
and the inverse temperature 5 = 10. We evaluate Eq. (22) using the Padé parameters, and
for this temperature we find good convergence with a Padé expansion order of N, ~ 20. The
resulting current in each lead is plotted in Fig. 1(b) (thick lines), along with the suitably rescaled
bias applied to the leads (dotted lines). In addition, we plot the steady-state value of the current
at each time, using the LB formula. This serves as a comparison between the best predictions
of the steady-state formalism and our fully time-dependent method, from which it is instantly
apparent that the TD current amplitude is an order of magnitude greater than that of the LB
current. There is a much sharper peak in the transient current in lead L than in R, because the
bias applied in L has the value Vj, + Ay at the switch-on time t = 0, whereas the corresponding
bias in lead R has the value Vi. In the long-time regime, the current signal in each lead has
the same form but the signal in R is phase-shifted by —n/2 with respect to the signal in L.
Additionally, ‘ringing’ oscillations in the current occurring at higher frequencies than the driving
frequency 2, can be seen, as also observed in [5] and [8]. We identify the physical source of these
frequencies in the energy gap |V, + 1 — E| between onsite energies and the constant bias shift
in the leads.

One can also see from Fig. 1(b) that, whereas the LB formalism preserves the condition of
charge conservation, Iy, (t) + Ir (t) = 0, at all times, this condition is not satisfied by the two
TD currents. We understand this as follows: electrons propagate in the lead at the finite Fermi
velocity v, so that the effects of a bias applied locally will take a finite time to propagate to
other parts of the junction [4]. If a constant bias is switched on in each lead, then following a
time delay equal to the transmission time of this signal across the junction, the rate of flow of
electrons from C to L (Ir) must equal the rate of electron transport from R to C' (-Ig), as in
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1.2 ==IL(t) TD Current
==IR(t) TD Current

1 —IL(t) LB Current
—IR(t) LB Current

R 08 e VIL(E)

exr (t > t0) = exr + VR (1)

Vak(er)

ewr (t > to) = err + Vi (t)

Figure 1: (a) Schematic of the molecular chain coupled to two reservoirs, modelled as a sequence
of quantum dots with inter-dot hopping and lead-dot hopping terms in the Hamiltonian. (b)
Current through each lead of a molecular wire junction in which the symmetry is broken due to
biases phase-shifted by 7/2, i.e. ¢ = 0, ¢ = —m/2. The number of molecular sites is 5, and
other parameters chosen are kT = 0.1, Vi, =5 = Vg, A, =4 = Ag, Q. =1 = Qpr, I'11 =
0.5, F55 = 05, E= hkk = 1, T = hkkJrl = thrlk =0.1.

this case the number of electrons in the molecular region N¢ (t) = —2iTr [G&, (¢,t)] is constant
in time. If the bias is time-dependent, then the Hamiltonian is no longer symmetric under time
translations and, in general, N¢ (t) also varies with time. Therefore local charge conservation
does not apply in this case, a fact that is reflected in the current characteristics of Fig. 1(b).

It is a point of concern with Fig. 1(b) that it appears to indicate an unbroken net flow of charge
into the molecule, because after the usual transient ‘ringing’ regime is over, the average value of
I, (t)+ IR (t) per cycle appears to be positive. This is a property which, if sustained indefinitely,
means that there will always be a charge increase in the central region of the junction - clearly an
unphysical situation. To investigate what is occurring here, we compute in Fig. 2 the transport
properties over a much longer time range of the same 5-site model as was considered in Fig.
1(b). The long time plots of both the sum of the currents (blue curve) and the particle number
N¢ (black) are displayed in Fig. 2, for this system, where to compute N¢ we have expanded
(11) into the left /right eigenbasis in a similar fashion to (22). Certain qualitative features of the
plots stand out, in particular a periodic ‘sloshing’ of the charge in the molecular region as the
number of particles increases there, before levelling off at a value below the maximum charge
of 10. Simultaneously with this dynamic filling of the molecular levels, the average value of
I, (t) + IR (t) drops until the integral under this curve evaluates to zero over a full cycle. Thus
in addition to the fast decay of the initial transient, there is a secondary underlying decay which
occurs over a much longer time scale. Note that this decay over two time scales is not possible
with a single-level model, so that it is fundamentally a finite-size effect.

In Fig. 2 we compare the results obtained for the sparse tight-binding level-width matrix
with the same plots for level-widths that are relatively non-sparse. Specifically, we take
I'rmn = 6mn0.5 = I'rmn, giving a level-width with a constant term along the main diagonal.
The timescale for decay of all transient modes in formula (22) is 7 = Maxz{1/7;}, where the
v; are defined as imaginary parts of the complex eigenvalues, &; = \; — ivy;. For the sparse
tight-binding level-width 7 = 61.9, whereas in the non-sparse case we have a decay time of
7 = 2. This order-of-magnitude difference is well illustrated by the extremely fast relaxation of
the non-sparse number density (red curve) to a steady oscillation below N¢ = 10. This implies
that the integral of Iy, (t) + I (t) over one cycle is zero, implying no long-term change in the
sum of currents, as shown by the orange curve in Fig. (2). Additionally, we note that despite
the qualitatively similar ‘sloshing’ between two values of the electron number in the molecule
after t ~ 7 has elapsed, there is a difference in the amplitude of the oscillating signal for the
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Figure 2: The electron number (black line) and sum of currents (blue line) for the sparse tight-
binding hamiltonian is compared with the electron number (red line) and sum of currents (orange
line) for a hamiltonian in which each lead is coupled with the same strength to every site in the
chain.

sparse and non-sparse cases. This is simply due to the fact that the overlap integral prefactors

(for example <¢JL‘ T, ‘cpf>) are smaller on average when Ty, is sparse.

5. Conclusions

In this work we have shown that the general formula for the current in a multi-terminal junction
derived in [8] can be manipulated into another form which is very convenient for numerical
calculations. Using the Padé approximation for the Fermi function it is possible to convert infinite
frequency integrals into fast-converging summations. In the case of a sinusoidal bias applied to
the leads all the time integrals can be removed analytically and expressed in terms of special
functions. To illustrate this formalism, we considered a molecular chain in a two-terminal junction
with a —7/2 relative phase shift in the sinusoidal biases applied to both leads. The calculated
current demonstrates similar transient and ringing effects to those observed previously [5, 8] and
reveals novel effects due to this dynamical symmetry-breaking. Specifically, we demonstrate the
violation of local charge conservation in the molecular region. We anticipate that in future we will
be able to apply this formalism to the study of quantum ‘pumping’, where symmetry-breaking
parameters in the periodic driving signal lead to a net transfer of charge through the system
with zero net bias [21]. We also find that for extended systems there can be two distinct decay
processes in the current characteristics: an initial ‘ringing’ transient following the bias switch-on,
and also an underlying decay of the entire signal implied by global charge conservation. The first
type of decay is a well-known effect, and has been studied before for static |[7] and TD [8] biases.
This latter type of decay is characterized by the fact that the signal retains its shape throughout,
and also by a decay time which is related to sparseness of the level-width matrix. We anticipate
that this double decay effect will be observable in more realistic extended systems than the one
considered here, and that the formalism developed here provides a fast way to access transient
properties in those systems.
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