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Abstract. We review a time-dependent slave bosons approach within the non-equilibrium
Green’s function technique to analyze the charge and spin pumping in a strongly interacting
quantum dot. We study the pumped current as a function of the pumping phase and of the dot
energy level and show that a parasitic current arises, beyond the pure pumping one, as an effect
of the dynamical constraints. We finally illustrate an all-electrical mean for spin-pumping and
discuss its relevance for spintronics applications.

1. Introduction

The idea of parametric quantum pumping regards a nanostructure (scattering region) connected
to two external leads (reservoirs) in which a dc current is produced in absence of bias voltage
by time periodic modulation of two system parameters. If the parameters change slowly
as compared to all internal time scales of the system, the pumping is adiabatic, and the
average charge per period does not depend on the details of the time dependence of the
pumping parameters X;(¢)[1]. Using the concept of emissivity proposed by Biittiker et al.[3],
Brouwer[4] related the charge pumped in a period to the derivatives of the instantaneous
scattering matrix of the nanostructure with respect to the time-varying parameters. Since then,
a general framework to compute the pumped charge through a conductor has been developed
for noninteracting electrons[5]. The interest in the pumping phenomenon has shifted then to the
experimental investigations of confined nanostructures, as quantum dots, where the realization
of the periodic time-dependent potential can be achieved by modulating gate voltages applied
to the structure[6]. In case of interacting electrons the computation of the pumped charge
becomes rather involved and few works have addressed this issue for different systems and in
specific regimes[7]. As for the case of interacting quantum dots, the pumped charge in a period
was calculated by Aono[8] by exploiting the zero-temperature mapping of the Kondo problem
within a non-equilibrium Green’s function approach (NEGF). A very general formalism was
developed in Ref.[9] where an adiabatic expansion of the self-energy based on the average-time
approximation was used to calculate the dot Green’s function, while a linear response scheme was
employed in Ref.[10]. Alternatively to the NEGF approach, a powerful diagrammatic technique
to treat the interacting quantum pumping based on a generalized-master equation method
was instead proposed in Ref.[11]. In more recent years the interest on quantum pumping in
interacting quantum dots has moved to the comprehension of the role of spin-orbit interaction[12]
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for achieving spin-current, and to non-adiabatic effects[13]. While the role of coupling of the
quantum dot to elastic deformations was analyzed in various papers in the limit of interaction
going to zero[14, 15].

Here we review a non-equilibrium slave boson approach for an interacting quantum dot
within the NEGF method to study the quantum pumping effects and which was introduced in
Ref.[16]. In particular we focus on the strongly interacting regime U — oo and derive first,
a time-dependent mean field equation for the slave boson and the constraint in the presence
of a time-dependent tunnel barrier then, we derive the expression of the pumped current in
the leads in terms of the Keldysh Green’s function of the dot which depends on the dynamical
constraint. In our treatment we are able to obtain an expression of the pumped current beyond
the adiabatic (i.e. w — 0) approximation, i.e. at finite frequency w of the pump. Our main
result is that the effect of the dynamical constraint generates a dynamical phase which couples
to the phase of the external parameters ¢ giving rise to a parasitic current beyond the genuine
pumping one. Finally, we discuss the proposal of a quantum pump able to produce spin current
without polarized electrodes in the presence of magnetic tunnel barriers. Let us note that in
the literature only few generalization of the slave-boson approach to a time-dependent case are
present. Among them there is the generalization of slave-boson mean-field theory for t-J model
to the time-dependent regime[19] to study the Landau quasiparticle transport and the study
of nonlinear transport in QD connected to reservoirs with arbitrary strength of the Coulomb
interaction under finite magnetic fields[20].

The organization of the paper is the following: In Sec.2, we introduce the model Hamiltonian
and derive the effective Hamiltonian by means of the slave boson approach in the strongly
interacting regime. In Sec.3 we give the dot Green’s functions within the Keldysh approach
and the expression of the non-equilibrium pumped current, focussing on the single photon
approximation. Based on an approximate solution of the constraints equation, in Sec.4 we
discuss the results obtained for the pumped current both in the case of a charge quantum pump
and in the case of a spin quantum pump. The conclusions are given in Sec.5.

2. The interacting quantum dot model

We consider an interacting quantum dot (QD) coupled to noninteracting leads in which the
current is generated by means of the temporal modulation of two out-of-phase gate voltages
controlling the transparency of the tunneling barriers.

The Hamiltonian of the system is:

H = Z €kC;Lkam + Z € d:r,da + Unyny + Z(Vkag(t)cimda + h.c.), (1)

koo o koo

where the operator CLM creates an electron of momentum % and spin o in the lead «, while d' is
the creation operator of an electron state on the interacting quantum dot, € being the energy of
a single occupied electron state. The third term is the electron-electron (e-e) interaction energy
U which comes into play when the dot screening length A; is bigger than the typical size of the
quantum dot. The last term describes the tunneling between the quantum dot and the leads.
We focus on the strongly interacting limit (U — oo) where the isolated QD can be only in
the empty and in the singly occupied states {|0),|0)} (where o =1,|) while double occupancy
is completely suppressed. By introducing the reference state |2) and the operators b (slave-
boson) and f, (pseudofermion) we may define: |0) = bf|Q) and |o) = fi|Q). Thus the
creation/annihilation original operators can be written in terms of bosonic (i.e. b) and quasi-
fermionic (i.e. f,) operators[17, 18] as: d, — bl f,, di — fIb with the extra constraint on the
single occupation of the dot which can be introduced by a Lagrange multiplier A.
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Within the slave boson representation the Hamiltonian becomes:

Hsp = exclyathoa+ D efifo+ D (Viao(t)chyod fo + hc) + AbIb+ D" flf, —1). (2)

koa o koa

Here the Lagrange multiplier A is fixed by the equation:
ONHEE) =0 = Y (f1fa) + (') =1 =0, (3)

while the slave boson operator b evolves in time according to the equation of motion h0:b =
[b, Hsp][21]:
hb = o+ Y Viao(t)eh, o fo- (4)

koa

We treat the slave boson operator b within the mean field approximation ((b) = B, (b") = B*) and
the original problem containing strong correlations is replaced by a constrained free-fermions-like
theory whose dynamics is completely described by the following Hamiltonian:

Hspyr = Hieads + Z(e + )‘(t))fifo' + Z(Vkaa(t)B*(t)cLUan + hc) + (5)

koo

+ AB(IB@P 1),

with the dynamical equation for the constraints:

ihOB(t) = AB)B() + Y Viao () (chyofo) (6)
koo
ST fe) + 1B —1=0. (7)

(e

As shown in (5) the interaction renormalizes both the QD energy level (e — e + A(t)) and the
tunneling amplitudes (Viao (t) — Viao (t)B*(t)). Let us note that due to the time evolution of
the slave boson field, which is governed by the equation (6), a dynamical phase shift with respect
to the phase of the external driving signals will appear.

3. Non-equilibrium Green’s function method

3.1. The quantum dot Green’s function

To derive the current flowing through the system via a quantum pumping mechanism we employ
the non-equilibrium Green’s functions (NEGF) formalism[22]. In our scheme of pumping we
modulate the tunneling rates 'y (t) = I'g o +1'g , sin(wt+pq) defined by I'g(t) = 27 por| Viepao (1) 2.
The retarded GF of the quantum dot (QD) uncoupled from the external leads is (A = 1):

gep(t, ') = —ids,0(t — t') exp{—i /t/t dt1(e + \(t1))}, (8)

being s,p € {1,1} the spin index. It has a form similar to that of the non-interacting system
except for the appearance of the Lagrange multiplier A(¢;) in the exponential. When the QD is
coupled to the leads, we must take into account the transition rate of an electron through the
system and thus:

Gryltt) = gyt el [ atn 3 I (e, o)

a=l,r
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where the exponential comes from the retarded self-energy:

' (th)

B, (10)

S (t,te) = —i656(tr — t2)

a=l,r

which depends on the renormalization factor |[B(t)|2. The corresponding advanced quantities,

i.e. G* and %%, are computed using the symmetry properties of the two-times Green’s function

and are obtained directly from the relation x3,(t1,t2) = Xps(t2,t1)*, x being G or ¥. Finally,
the Langreth rules[23] can be employed to compute the lesser self-energy as

S5t te) = i0spf(ts —ta) > TE(t1)|B(t1)]?, (11)

a=l,r

where f(t;—t2) is the anti-Fourier transform of the Fermi function f(FE) (notice that the chemical
potential is the same for both the leads).

In order to calculate the current flowing through the QD we need to calculate the lesser GF
G5p(t1,t2) of the QD exploiting the Keldysh equation[24] and by using G"/* and <. Together
with the single particle Green’s function we need yet to solve the constraint equation. Explicitly
we can rewrite Eq.(6) and (7) as:

Lo (t)
2

i0Bt) = [A)+ Y G, () =5 |B(1) + (12)

b [ G ()BT ()5 1)

IB(t)]? 1+iY Gygl(t,t). (13)

Previous equations along with the Hggyrp completely describe the physics of the interacting
quantum dot in the infinite-U limit.

3.2. Non-equilibrium currents
Within the non-equilibrium theory the spin resolved current pumped in the lead a can be written
in terms of the QD Green’s function in the following form:

% dE1dE>dEs 5. 510
Ig(t) = hZRe{/WeZ(ES El)t[GUU’(ElaEZ)Eia’o(E%EB)+ (14)

+ G5, (Br, Ba) Y4 o1, (B, Bs)},

where the two-times Fourier transform of the GF are needed in a non-equilibrium situation since
translational time invariance is broken. Here we are interested in deriving the pumping current
in an almost adiabatic situation, i.e. at small (w < U/h) but finite frequency of the pump,
thus we expand all the relevant time dependent quantities by considering only the so called
single-photon contributions as follows:

At) = Z An exp{—inwt} (15)

n=0,£1

re) = Z 'y, exp{—inwt}
n=0,£1

B(t) = Z B,, exp{—inwt},
n=0,£1
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Figure 1. The system described in the main text: A Quantum dot (dashed region) coupled to
external leads via tunnel barriers whose transparency can be modulated in time via top gates.

while the Green’s function and the self-energy become of the form:

Xgp(E17 Ey) = dgp Z xgm(El)é(E1 — By 4+ nw), (16)
n=0,%1

where x is G or X, j =<,r,a. As will be carefully explained in Sec. 3.4, the single photon
approximation is well justified under the assumptions of (a) adiabatic (w < U/h) driving signals
and (b) small modulation amplitudes (weak pumping). Assuming simultaneous validity of (a)
and (b), the structure of the effective Hilbert space, lacking of the double occupied state of the
quantum dot, is suitable to get a correct description of the time-dependent case. Within the
single-photon approximation, the spin resolved dc current I pumped in the lead o takes the
form:
dEr

Iz = e/) 3 Rel | G5salGr (B Sy (B -+ 1) + Gy (B Eiy(Br 4], (17)
n==1

which contains information about the pumping cycle and the absortion/emission processes of
one photon. Within the single-photon approximation the behavior of the pumped current is
mainly determined by integrals of products of the function:

Dy (E) = [E +nw — (e + o) +i(76/2)] 7, (18)

where the n = 0,+£1, )\g is the static part of the Lagrange multiplier and ~, is a renormalized
linewidth depending on the slave boson field:

Yo = Y| 1Bol* T + 2Re{|Bo|*T5,; + Too(B5B1 + BoB™ 1)} (19)

07

As shown in (19) the finite frequency effects modifies the mean lifetime of the electron on
the QD due to the interference effects originated by the slave boson field Bii. Moreover,
let us note that the Fourier components of the slave boson field are a complex quantities,
Bi1o = |Bxiol exp{iqﬁzt’o}, i.e. they can be expressed in term of a phase, thus interference
terms of the form cos(¢,§IE — ¢Y) appear in D (E). The existence of such dynamical phases
(and the corresponding interference terms) provides a decoherence source for the electron
transport. Furthermore, since I'7.; picks up a phase due to the external driving signals
g1 = :l:iF%’w exp{Fipa}, the GF of the problem depends separately, on ¢y r and not on
the phase difference ¢ = pr — . This will imply the presence of parasitic currents, as we will
see below.
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3.8. Constraint equations within the single photon approximation

As we have seen above, the current pumped through the quantum dot can be calculated from
the Green’s function. Since it depends parametrically on {Ag, Ax1; Bo, B+1} one has first to solve
the constraint equations. By exploiting the Fourier expansions of Eqgs.(12)-(13) within the one-
photon approximation one gets a set of coupled equations that can be approximately solved.
In particular, one considers the corrections beyond the adiabatic limit. From the analysis of
the parametric expression of the current pumped one observes that the relevant quantities to
be computed are: Mg, A1, |Bo|? and ByB1 + BoB* ;. Since we are modulating the tunneling
amplitudes via top gates, we can derive an approximate expression of Ay and ByBi + BoB* | to
the first order in I',,1. The constraint equations to the lowest order are:

ar
No= =3 Too [ G HE)RADS(E)) (20)
Bol> =1-=> " [Bo|*Toy0 Zﬂf

g

(E)|D§ (B)I*.

These equations have the same structure as in the adiabatic case[9] but implicitly depend on By
contained in DJ(F), thus higher order constraints have to be considered in order to solve the
problem. In particular, the equation which needs to be considered is the one for BiB; + BoB*;
whose formal solution is[16]:

— Y, |Bo’To | $£DG(E)D74(E) f)(E)
1+, Top [ $EDG(E)DT(E) fO)(E)

BBy + BoB* | = (21)

where f(*)(E) = f(F + w). Expanding the r.h.s. of Eq.(21) up to the first order in 'y and
taking the limit w — 0, the dependence on By, disappears and thus Eqs.(20)-(21) can be solved
independently from the other equations. Following a similar procedure, one can also solve the
equation for A\; whose solution is:

A dE .
M DS BT [ SPGB E) (22)

Bil—)o‘

The solution for the constraints are then plugged in the expression (17) to numerically obtain
the current.

3.4. Validity of the non-equilibrium slave-boson approzimation

Before presenting the results for the pumped current, let us comment on the validity of the time-
dependent slave boson approximation. It is well established that the slave boson method works
well in the strong U-limit for a static problem. As for the time-dependent case, we consider the
weak-modulation (small amplitude of the pumping parameter) and almost adiabatic pumping
limit which ensure that the double occupied quantum dot state remains empty, while the net
electron flow is driven from one reservoir to another by absorbing or emitting an energy quantum
hw <« U from the driving signals. In general, an arbitrary time-dependent driving signal
allows multiple photon-assisted tunneling (mPAT) processes where the absorption/emission of
n photons takes place, with an absorbed/emitted energy nhw. When nhw is comparable to
U, the quantum dot double occupation becomes allowed and the slave boson picture described
in our work is not applicable. However, under the simultaneous assumptions of: (a) hw < U
and (b) small amplitude modulation of the pumping signals the time-dependent slave boson
procedure should provide a (non-trivial) perturbation of the static slave boson theory. Here, the
assumption (b) ensures that multi-photon processes are less probable compared to the single-
photon absorption/emission. It’s also interesting to notice that for a small quantum dot (tens
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of nanometers in length) the charging energy U takes values in the meV range. This implies
that U/h takes value 1.5 THz (assuming U= 1 meV) and thus pumping frequencies w up to the
GHz range (i.e. the relevant experimental range) can be safely considered as adiabatic. Within
this framework the single photon approximation is well justified and the structure of the Hilbert
space, lacking of the double occupied quantum dot state, remains similar to that of the static
case. In this respect, the time-dependent slave boson theory presented here provides small, but
relevant, perturbations to the well established slave-boson static method. In general, the method
is not applicable to the generic time-dependent case (strong amplitude pumping, non-adiabatic
signals).

4. The pumped current

4.1. The charge current

Here we discuss the results of the current pumped in the right-lead by assuming I'g = 10 peV
as unit of energy, while the current is normalized by ig = —el'g/h (ip ~ 2.56 nA) and the
temperature is fixed to zero.

In Fig.2 we show in the panel (d) the current pumped in the right lead I (continuous line) as
a function of the position of the bare level of the dot € and by setting the remaining parameters
as follows: F?;L/R = 1.5, F?;L/R =0.05, w =0.05, o1, =0, or = 7/4. Moreover, the tunneling
does not depend on the spin, and thus Ir = I%, i.e. the current is spin-independent. The lower
curve in panel (d) of Fig.2 represents the contribution to the current due to the modulation
of the constraint A(¢), while the upper curve is the current pumped by the modulation of the
tunnel barriers. As shown when € > u the current induced by A(t) is vanishing and the total
current is dominated by the contribution of the tunnel amplitudes; on the other hand, when
the energy level of the QD ¢ is much lower then the Fermi energy, the current induced by the
modulation of A(¢) is the dominating one. The behavior of the current shown in Fig.2 can be
explained when looking at the behavior of the slave boson parameters as a function of (e —pu)/I'y.
Panel (a) of Fig.2 shows |By|? vs (€ — u)/T¢ which is proportional to (1 — n) where n is the
average occupation on the QD. The average occupation is going to zero when the energy level
€ is well above the Fermi energy and the tunneling amplitudes is weakly renormalized, while a
strong renormalization is obtained in presence of a non-vanishing electron density on the QD,
i.e. when its occupation is close to one. A similar effect is evident in panel (b) of Fig.2 where
Ao is plotted as a function of (e — p)/Tg. When € < pu the effect of the constraints becomes
dominant. Another effect of the constraints becomes clear when we look at the absolute value
of the oscillation amplitude of A(t), i.e. |A1| (see panel (c)). As shown, below the Fermi energy,
|A1| becomes comparable to the oscillation amplitudes of the tunneling rates I'Y (= 0.05Ip) and
thus the pump starts to be affected by the dynamics of the constraints. Indeed, comparing panel
(c) and (d) one observes that the A-induced current (red curve) is enhanced when |A| is close
to its maximum value.

In Fig. 3 the pumped charge current in the left and right lead is shown as a function of
the pumping phase ¢g. Differently from the adiabatic (w — 0) and noninteracting case, the
external phase difference pr — ¢ is not the only relevant phase. Actually, in the strongly
interacting limit terms of the form sin(p, + (gb?f — gbg)) appear in the charge current. These
interaction-induced terms are of the same order of magnitude of the perturbation induced by
the external driving signals and thus strongly affect the usual sin(y)-behavior. In particular,
the modification of the current-phase dependence due to the interaction produces rectification
contributions (Irect(¢r, = 0,0p = 0) # 0) similar to those reported in a different context in
Ref. [25]. Here we do observe that at varying the bare QD energy level € the system is guided
through the resonance (e+ o) and the current changes its sign (see lower red dashed line). Thus
in the strongly interacting case the presence of new phase differences in the pumped current is
the main modification compared to the free-fermion case.
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Figure 2. The top-panels (a)-(b) show the holes density |By|?, and \g as a function of (e—u)/T,
while the lower panels (c)-(d) show |A;| and the total charge current I (full line) as a function of

(e—u) /Ty computed setting the remaining parameters as follows: ', L/ R — 15, Tow LIk _ =0.05,
w = 0.05, ¢, =0, ¢r = 7/4. The dashed lower curve (red) in panel (d) represents the current
induced by the modulation of A\, while the upper curve (dashed-blue curve) depends only on the
modulation of the tunneling amplitudes.

Figure 3. Charge current I (left panel) and Ir (right panel) as a function of the pumping
phase ¢ computed fixing the remaining parameters as follows: Fa LIk _ 1. 5, Tow LIR _ . 05,

w = 0.05, @1, = 0. For both panels the curves are obtained for dlfferent values of the QD energy
level (e — u1)/T as indicated in the figure labels. Data are rescaled by a factor 1072,
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4.2. Spin pumping

A spin-pump can be obtained when the tunneling amplitudes depend explicitly on the spin e.g.
as: I'9(t) =T*(t)(1+po), where p is a polarization. This situation can be realized when the QD
is connected to the external non-magnetic leads via thin magnetic tunnel barriers|26, 27]. The
magnetic barriers, in fact, work as a spin-filter (SF) whose effect is controlled by the polarization
p € [0,1] of the barriers. We assume that the polarization p is independent on time, while the
tunneling amplitude I'*(t) is taken of the form:

o(E) = 0 + [Fﬁexp'(i%)

= 5 exp(iwt) + c.c.} : (23)

In the presence of the ac modulations of the external gates, along with the spin-selective action
of the barriers, a spin current Iy = ) _ ol is generated beyond charge current I. = )" I,.
In Fig.4 we study the charge (full line) and spin (dashed-dotted line) currents as a function of
the bare energy level e of the QD setting the remaining parameters as in the figure caption. For
non-vanishing polarizations (i.e. p = 0.4) of the barriers a spin current is observed. Furthermore
when € ~ u — 5I'y the charge current takes negligible values and the pump works as a pure spin
current pump (Fig.4a). Let us note that the pure spin current obtained here is generated in
absence of polarized leads thus avoiding the problem of the spin injection. Our analysis shows
that an all-electrical control of the spin current is possible and is potentially useful in spintronics
devices.

100 ) X107

. \ A

10 1
(€~ /To=—4

6 -4 -2 0 2 4 s o 12 s a5 e
(e-p)iTy Pr

Figure 4. Charge current I, (full line) and spin current I, (dashed-dotted line) pumped in the
right lead as a function of (e — u)/I'g (left panel) and of the phase ¢g (right panel) by setting
the remaining parameters as follows: Fg‘:L = 1.5, FB“ZR = 1.3, FSZL/R =0.3, w=10.05, p =04,
w1, = 0. In the left panel the phase bias is fixed as pr = 7/4. Data are rescaled by a factor

1073,

5. Conclusions

We reviewed a time-dependent slave-bosons approach within a non-equilibrium Green’s function
formalism to study the quantum pumping of charge and spin in an interacting quantum dot
in the limit of infinite Coulomb repulsion. The pump based mechanism is the time periodic
modulation of two tunnel barriers whose transparencies are governed by the external top gates.
In particular, we showed an equation of motion of the slave boson field B(t) which is equivalent
to an infinite series of constraints, generalizing the adiabatic case. By using a finite set of
constraints (single photon approximation) the expressions of the relevant Green’s functions and
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of the current have been derived. We showed that the pumped charge current contains, beyond a
term related to the modulation of the out-of-phase external parameters, an additional term due
to the internal dynamics of the Lagrange multiplier and the slave boson field (parasitic pumping
current). While for a noninteracting quantum dot model the current depends only on the phase
difference between the two external parameters, ¢rp — @, in the strongly interacting limit it
depends separately on ¢ . The additional pumping contributions are originated by the phase
difference of the external parameter phase (for instance pr) and the phase of an internal degrees
of freedom (the slave boson field or the Lagrange multiplier). This mechanism is similar to that
obtained in the presence of dynamical effects of a mechanical degree of freedom coupled to the
QD[14].

Finally we showed how in the case of spin-dependent tunnel barriers with a finite polarization,
the pump works as a spin current generator. Furthermore, by changing the energy level of the
QD the pump can work as a pure spin current generator. This effect shows the possibility of
all-electrical control of the spin current pumped through a QD and is relevant for spintronics.
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