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Abstract. The availability of ultra-short and strong light sources opens the door for a variety of new
experiments such as transient absorption, where optical properties of systems can be studied in extreme
nonequilibrium situations. The nonequilibrium Green’s function formalism is an efficient approach to
investigate these processes theoretically. Here we apply the method to the light-matter interaction of the
magnesium 2p core level accompanied by electron-plasmon interaction due to collective excitations in the
conduction band. The plasmons are described as massive bosonic quasi-particle excitations, leading to a
second-order equations of motion, requiring a new approach for their propagation.

1. Introduction

Electronic correlations are manifest in a number of spectroscopic experiments. Photoemission [1, 2]
and, in particular, double photoemission [3, 4, 5], photoabsorption or electron-energy loss spectroscopy
(EELS) represent some of the most direct approaches. Here we exemplary focus on photoabsorption.
The central quantity hereby is the density-density response function y, which is a genuine two-body
quantity and thus captures electron (or hole) pair correlations. Computing y is typically an involved task.
Depending on the system at hand, few approaches are suitable. For small systems, full (or truncated)
CI methods deliver accurate many-body properties including the complete particle-hole (e-/) spectrum.
This route becomes inaccessible with growing system size, such that approximative schemes are invoked.
One of the most employed approach is many-body perturbation theory (MBPT), where y is obtained from
the four-point e-h propagator L [6, 7]. In turn, L is the solution to the Bethe-Salpeter equation (BSE). In
combination with the GW approximation [8], the BSE approach has been widely applied to molecules,
clusters and solids [9, 10, 11, 12, 13, 14].

An alternative route to access y is to directly use linear response, as the variation of any one-body
observable (e. g. the dipole moment) upon applying a weak perturbation potential d¢ is proportional to
the convolution of y with d¢. Hence, carrying out real-time propagation of the system is required in
this framework. One important method solving this task is time-dependent density-functional theory
(TDDFT) [15]. Its advantage lies in relatively low computation cost, which allows for efficiently
computing linear response properties of molecules up to larger clusters [16, 17, 18, 19].

On the other hand, TDDFT is currently only available within the adiabatic approximation and thus
lacks memory effects. The nonequilibrium Green’s function (NEGF) formalism is a natural tool for
accounting both correlation and memory effects. The equations of motion (EOM) for the Green’s
functions (GFs), the Kadanoff-Baym equations (KBEs), allow hereby taking the MBPT to the time
domain [20, 21, 22], providing important assessment on advanced approximation schemes [23, 24, 25].
A time-dependent approach beyond the adiabatic approximation becomes increasingly important in view
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of the impressive advances in generating attosecond laser pulses [26, 27, 28], providing insights in
transient electron dynamics in systems ranging from atoms to solids [29, 30, 31]. Pump-probe setups
using these light sources hence are able to deliver transient optical properties such as transient absorption
[29, 32, 33, 34].

In this contribution we study the KBE nonequilibrium dynamics of electrons coupled to bosonic
quasi-particle excitations such as phonons, vibrons, quantized photons or plasmons. One prototypical
model in this regard is the s-model originally proposed by Lundqvist [35] and solved by Langreth [36].
It was introduced to describe photoemission from a deep core states accompanied by the creation of
a plasmon [37]. This inelastic process is reflected in a series of plasmon satellites (PSs) on the left-
and side of the quasi-particle peak (QP) in the spectral function. Such electron-boson model follows,
e. g., from plasmon-pole approximation for the screened interaction W [8], electron-phonon (or electron-
vibron) interaction [38, 39, 40, 41, 42]. Although we focus on electron-plasmon interaction here, the
methodology presented here is applicable to other electron-boson systems, as well. Hence, related
methods such as molecular pump-probe spectroscopy [43, 44, 45, 46, 47] lie within the scope of our
approach.

We present the KBEs for the relevant correlators of coupled electron-boson system in the framework
of the MBPT (sec. 2), going beyond the standard frozen-boson approach [48, 49]. We apply our theory to
the transient absorption of the Mg 2p core level accompanied by plasmon excitations in the conduction
band (sec. 3).

2. Hamiltonian and equations of motion

We consider an electronic system with single-particle (SP) energies ¢ with corresponding fermionic
annihilation operators ¢;. The electrons are assumed to interact with a single boson mode with energy 2
and bosonic annihilation operator b. The equivalent coordinate-momentum representation of the bosons,
that is

0= (b+5), P=-—(5-5) 0

will be used in what follows. A generalization to the multi-boson case is straightforward and will be
presented elsewhere. Besides the effective interaction mediated by the electron-boson coupling, no
further electron-electron interaction is accounted for. The total Hamiltonian describing the system in
equilibrium is taken as

I:IO = I:Iel + I:Iel—bos + Hbos s (2)
where o
Aa= ) &t Huo= 7 (PP +07) 3)

i
are the Hamiltonians describing the individual subsystems. The coupling Hamiltonian is adopted to the
deep core-level scenario:

Heovos = ) Titit] Q. @)
i

Note that generalizing to the more general matrix case I'; — I';; does not cause any technical difficulties.
Light-matter interaction targeting the electrons is taken into account by

Ao = ) Fyeje; +he., (5)
i

Besides the usual one-electron GF G;j(t,1') = —i(Té,'(t)éj.(t’)), the suitable counterpart describing
bosonic properties is the coordinate-coordinate fluctuation correlator

D(t, 1) = =i [(TQ00(t)) = (QONQW)] - 6)
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Figure 1. The real contour C, running from —oo to some finite time and back to —co. The subscripts +
(—) of a contour argument 7 that it belongs to lower (upper) branch of the contour.

Time arguments lie on the Keldysh contour ¢ = . € C shown in fig. 1 (contour ordering operator 7).

The derivation of the coupled EOM for G;;(t,7') and D(t,t") follows from the standard Heisenberg
EOM. It should be noted though that applying the derivative id; to D(t,¢’) is not yielding a closed
equation, as 9,0(t) = QP(¢). Applying the derivative again on the other hand one obtains

01 = -Q*0(0) - ) " T (@)

which has the form of a driven harmonic oscillator equation. Replacing the occurrence of higher-order
correlators by respective convolutions with corresponding self-energies, the EOM for both the electron
and the boson GFs attains the form

i0,Gij(1,1') = 6,6(t — 1) + Z W ()G (e, 1) + Z f At Su(t, )Gy, (T)
k r Y€

1
—= (07 + Q*)D(t.0) =6t )+ | d” Tt t")D(", 1) . (8)
Q\’ c
In the context of electron-phonon interaction, the lowest-order approximations to electron self-energy
2;j(t,1') and the boson self-energy II(z,1’) is known as the self-consistent Born approximation [39, 40,
50, 51]. Besides the mean-field term

h%[F(t) = 0 + Fij(t) = T:6; { QD) , ®

one obtains
25}27)(;, t') = i[i0Gi(1, £ )D(t, 1) (10)
NA,¢) = -i )" TGt )G (1) (11)

ij

as second-order (in electron-boson interaction) self-energies. Eq. (10)—(11) can be paralleled with the
GW approximation to Hedin’s equations [7] — I';I";D(¢, ") hereby plays the role of the dynamical part
of the screened interaction W. In case W is dominated by one plasmonic excitation, the plasmon-pole
approximation applies and allows for reducing a system of interacting electrons to the electron-boson
model investigated here. Therefore, we will term eq. (10)—(11) as GW approximation in what follows.
Analogously, the GW, approximation refers to ignoring II?(t, 1), such that the boson correlator D(z, ')
is entirely non-interacting.

Importantly, the bosonic dynamics is not only captured by the coordinate-coordinate correlator D(z,1’)
(which contains information on the fluctuations of Q), but by the boson amplitude (O(1)), as well. This
is quite distinct from electronic propagators. Because of the explicit appearance of (Q(r)), a respective
EOM needs to be formulated:

1(d A
-3 (@ ; 92) OM) =iy T,Gulr*.1), (12)

' A rigorous derivation can be done employing a source-field approach similar to Hedin’s equations [6] and is the scope of
future work.
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where t* is (with respect to the contour ordering) infinitesimally larger that ¢.

Inserting the second-order approximation to the self-energy, eq. (10)—(11), eq. (7)—(8) in combination
with eq. (9)-(12) leads to a self-consistent set of equations. The solution strategy relies, as usual, on
the projection of the contour arguments onto observables times. The specific arrangements G;;(z;,1.) =
Gl.>j(t, ') (Gj(t-, 1)) = ij(t, t")) are known as the greater (lesser) GF (D= is defined analogously). Note
that the time arguments of Gl.z. refer to real, observables times now. By employing the Langreth rules
[22, 7], eq. (7)—(8) is then transformed into the KBEs, which are solved with a method similar to ref. [52].
Appropriate modifications for treating the second-order KBE for the boson propagators are incorporated
by replacing the Heun method (first order) by Numerov’s method (second order).

Note that the contour fig. 1 lacks the imaginary track which required to account for a correlated initial
state. Hence, we apply the method of adiabatic switching [22], allowing for working with lesser/greater
GFs only.

3. Transient absorption of Mg 2p core level

As a proof-of-principle we apply the theory outlined in sec. 2 to core-level photoabsorption. For
concreteness, we consider the transition from the magnesium 2p core level to the conduction band.
We construct the electronic part of eq. (2) comprising two electronic levels |2p) and an excited state |f)
located just above the Fermi energy er. In principle, a continuum of Bloch states needs to be accounted
for when describing photoabsorption, describing (i) transitions within the conduction band including
plasmon excitation, and (ii) transitions from the core level to states above the vacuum level (see fig. 2).
Both types of processes are reflected in a, possibly large, background signal. We are however interested
in the onset attributed to the plasmon satellites originating from the excitation of the core state. In
the pump-probe setup detailed below, the pump pulse can be tuned to resonantly create a core hole.
The processes (i) and (ii) will thus hardly be affected. Therefore, the mostly static background can be
removed. The electron-boson model eq. (2) that lacks this background is then well suited for describing
the remaining plasmonic features. Furthermore, we take the continuum of accessible states into account
in a approximate fashion by coupling the |f) to an environment. This is accomplished by adding an
embedding self-energy Z;.m’z(t, r) = E;Tn’z(t —t') to eq. (10). For simplicity, we keep it within the
wide-band limit approximation (WBLA) [7], defined by

T(t) = i Tem f

—00

F dw _.
— e Wl gnw=er) (1) = ~iTem f
JT

€F

” d_we—iwte—fl(w—EF) (13)
JT

where 1 > 0 is a regularization constant (we set n = 0.01). The embedding coupling constant is set to
I'em = 3 eV, leading to a broadening of |f) comparable to the band width of accessible states below the
vacuum energy. The parameters entering the Hamiltonian are estimated in line with experiments [53, 54].
We take e, = =50 eV, ¢y = —3.68 eV (see fig. 2(a)). Only after the electron was excited from the core
state it interacts with plasmons. Hence I'y can be assumed as zero, while we take I';, = 5 eV. The
plasmons, in turn, originate from transitions around the Fermi level. They are treated within the small-
momentum limit, i. e. the plasmon dispersion is ignored, and only a single plasmon mode Q ~ 10 eV is
incorporated (see fig. 2(a)). Solving the KBEs in equilibrium yields a spectral function of the core level
with a strength of the first PS comparable to what has been observed [53].

In order to investigate the excited-state properties within optical absorption, we apply specific fields.
We choose F;j(1) = f(t)m;j, where map 2, = myp = 0 and myp, r = my, defines the dipole operator of the
system. According to linear response theory [55], the change of the density matrix p;; upon applying a
weak field F;;(r) is determined by the retarded response function )(E.kl(t, v):

(Spij(t)zz L dr Xg.kl(t,t')Fkl(t'). (14)
kl
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Figure 2. (a) Sketch of model system for describing absorption from the magnesium 2p core level (|2p))
to an unoccupied state right above the Fermi level e (|f)) accompanied by plasmon excitations in the
conduction band. (b) Equilibrium polarizability ag(w) in both the GW and the GW; approximation,
computed by the time-propagation method.

Hence, the dipole response of the system is governed by the polarizability

R
a(t,t) = Zmﬁ/\/ijkl(t’ )myg .
ikl

In equilibrium, a(z,t") = ao(t — ") depends on the time difference only, such that Fourier transformation
with respect to ¢ — ¢’ is possible. The convolution eq. (14) is thus turned into multiplication in frequency
space. The induced dipole is then just given by 6M(w) = ag(w)f(w). The special case f() = foo(?)
directly allows for computing ag(w) = dM(w)/ fo. As usual, refractive properties are encoded in the real
part, whereas the imaginary part contains information on the absorbed photons.

The equilibrium polarization @g(w) is shown in fig. 2(b), calculated in both the GW as well as in
the GW, approximations. The results for the two cases are identical — a behavior that is to be expected
as the boson self-energy eq. (11) exactly vanishes if the 2p level is fully occupied in the initial state.
Therefore, the GW, approximation is well suited for studying (general) electron-boson systems close to
equilibrium, a fact that is often utilized for simplifying the treatment of electron-phonon interaction [38].
The main feature of the absorption spectrum Im{eg(w)} is, besides the strong QP peak, a PS (further
satellites are existing but rapidly loosing spectral weight) separated by +Q from the QP peak (denoted
by PS™). Hence, the absorption spectra resembles the (inverted and shifted) spectral function that is
broadened by the environmental coupling of the |f) state.

This picture changes substantially in an excited-state scenario, where the plasmonic dynamics due to
the electronic excitation can no longer be ignored. The optical properties encoded in the polarizability of
this excited system can, depending on the pulse strength, be very different from fig. 2(b). Experimentally,
this dynamical scenario can be studied using transient absorption: a short (but spectrally confined)
pulse resonantly induces excitations, whereas a second (spectrally broad) pulse probes the system
[29, 32, 33, 34]. In order to reflect this setup we modify the driving field f(z) = foump(t) + fprobe(D);
Jprobe(H) = foo(t — 1) is the probe pulse and foump(t) = fp0 sin(wrt) sin®(rt/ T,) for0 <t < T, and
Jpump(?) = 0 otherwise denotes the pump pulse. Here, T}, denotes the pulse duration and wy. the central
frequency. The latter is tuned to wy, = €7 — €p. The pulse duration is fixed at 7}, = 0.5 fs, it comprises
5-cycles, but still has a well defined energy. The time 7 denotes the time delay between pump and probe;
7 < 0 means the probe precedes the excitation, while for 0 < 7 < T, pump and probe overlap and 7 > T),
corresponds to probing the system after the pump pulse has been switched off.

The time-dependent dipole moment 6 M (#) has now two contributions: 6M(f) = 6 Mpump(1)+6Mprobe(?).
As the pump pules might be strong, linear response theory does not apply here. However, choosing the
probe amplitude fj sufficiently small allows for characterizing the probe contribution to the total dipole
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Figure 3. Transient refraction (left panel) and absorption (right) spectra for the GW (solid blue) and GWj
(red dot-dashed line) approximation. The inset sketches the temporal arrangement of pump (amplitude
fpo = 0.1 a.u.) and probe pulses.

moment by 6Mprobe(?) = foal(t, 7). Fourier transforming,

o(w,7) = %OéMpmbe(w) = f ) dr €' S Mprope (1) = f " dr e [6M(t) - 6Mpump®)| . (15)

—00 [ee)

yields the frequency- and delay-dependent polarizability a(w, 7). As performing the time propagation
delivers the total dipole 6 M(t) only, two calculations have to be performed for each 7: one with f = 0
and one with finite fy in order to individually determine the difference in the square brackets in eq. (15).

In fig. 3 we present transient absorption spectra a(w,7) for a weak pump pulse f,0 = 3 eV,
corresponding to a depopulation of |2p) by 0.15. For 7 < 0 the behavior of both refraction and absorption
are close to the equilibrium case. Increasing T we observe the transient formation of a second PS located
at the left of the QP peak (let us denote it by PS™) — this is due to the non-zero plasmon occupation
resulting from the pump pulse. This picture is consistent with the equilibrium case (no pulses applied),
where the spectral function computed with nonzero (but fixed) plasmon occupation displays a PS™ peak,
as well (fig. 4(a)). For overlapping pump and probe pulse (r = 0) the QP peak is suppressed, as
finite population of |f) decreases the excitation probability. The QP gains spectral weight again with
increasing 7, as the population of |f) vanishes due to the environmental coupling. Generally, the GW and
GW, approximations agree well also in the transient case, except when pump and probe pulse overlap.
This is expected as the system is in a nonequilibrium state due to the laser driving. Furthermore, the
GW, approximation predicts a spiky PS™ at w = 33 eV, whereas PS™ is smooth within the full GW
approximation.
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Figure 4. (a) Spectral function of the system in equilibrium with fixed plasmon occupation number
npr = 0,1,2. (b) Induced dipole oscillations 6M(z) for f,o = 0.1 a.u., and (¢) f,0 = 0.3 a.u.; the
horizontal dashed black line indicates the time t = 7 = 0.3 fs. when the ¢-kick is applied.

This is an indication of different damping behavior of §M(¢) in the two cases: because the full time
dependence enters the Fourier transformation in eq. (15), relaxation and dephasing play an important
role. For instance, applying the probe pulse long after the system has been excited (r — o0) is only
sensitive to the new steady state, while probing immediately after provides insight in the equilibration.
Similarly, T — —oo yields the equilibrium spectrum, whereas a(w, 7) for finite 7 < 0 is still influenced
by the probe pulse. How rapidly the limit 7 — =+oo is reached depends on the damping strength. For
our system, |f) is directly damped by the embedding self-energy, while |2p) experiences damping by
correlation due to the electron-plasmon interaction. Additional tests show that 6M(#) indeed is quickly
damped within the GW approximation, while a small oscillation amplitude associated to PS™ remains
when employing the GW, approximation (see fig. 4(b)). The formation of PS™ hereby is only due to
the (first-order) mean-field contribution to eq. (9), meaning that the boson coordinate (O(1)) oscillates,
but its fluctuation described by D(z,¢’) is unaffected. Due to the self-energy, energy is transfered from
the electronic subsystem to the plasmon subsystem, leading to damping of the electronic excitation. In
the GWy approximation however, an infinite amount of energy can, in principle, flow into the bosonic
degrees of freedom, at variance to the GW approximation.

We proceed by increasing the pump pulse strength to f,0 = 0.3 a.u., lowering the occupation of
the core level down to 0.17 after the pulse. The results for the dynamical polarizability are depicted
in fig. 5. This almost perfect population inversion simulates a strong deviation from the equilibrium.
Indeed, increasing T until pump and probe pulse overlap, a(w, T) becomes mostly negative — the system
does not absorbs photons, but predominantly emits light, mostly at the energy of the QP and PS™ peaks.
Hence, the down-conversion to smaller light frequencies occurs in the system. This is a signature of
nonlinearities and cannot be observed if the two subsystems are not coupled. For larger 7, the relaxation
of the |f) state allows for transferring population to this state again. Since |2p) is almost empty, the
optical response is however strongly suppressed. Again we realize that the GW, approximation delivers
an overall good description, apart from strongly nonequilibrium situations. This is particularly apparent
for 7 = 0.6 fs, where significant deviations occur. Since the PS™ peak is pertinent to the scenario where
the bosonic mode is in nonequilibrium it is poorly described by the GW, approximation, as well (similar
to fig. 3). Fig. 4(c) shows the dipole 6M(¢) for both approximations. It shows that GWy propagation
is weaker damped which can be traced back to the form of the imaginary part of the self-energy in the
frequency domain. In this case there are no features that would lead to an efficient damping of PS™ state.

4. Conclusions

We studied the equilibrium and transient refraction and absorption properties of a model system
describing electron-plasmon interaction of core levels in metals. The plasmon mode was characterized
by the collective coordinate (Q(¢)) and the coordinate-coordinate fluctuation correlator D(¢,1). We



Progress in Non-equilibrium Green’s Functions (PNGF VI) IOP Publishing
Journal of Physics: Conference Series 696 (2016) 012006 doi:10.1088/1742-6596/696/1/012006

Re{a(w,t)} Im{o(w,7)}

1 T T T T T T T T T T T T T T T T

—GW ] 1$ ]
c=tosfs | ] I 0.5 6

n n n n 1 n n n n Ev n n n n n n n
20 30 40 50 60 70 80 90 20 30 40 50 60 70 80 90

o (eV) o (eV)

Figure 5. Transient refraction (left panel) and absorption (right) spectra for the GW (solid blue) and GWj
(red dot-dashed line) approximation. The inset sketches the temporal arrangement of pump (amplitude
fpo = 0.3 a.u.) and probe pulses.

presented the equations of motion for the two-times nonequilibrium Green’s functions describing both
the electronic and bosonic degrees of freedom. These equations were solved to determine the transient
optical properties by simulating pump-probe setup. Our full propagation scheme yields, in contrast to
the usual frozen-boson approach, accurate absorption spectra even in strong nonequilibrium situations.
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