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Abstract. Interactions between DNA binding protein and specific base pairs of nucleic acid is 

critical for biological process. We propose a new model of DNA-protein interactions to depict 

the dynamics of specific DNA-protein interactions. Hydrogen bonds (H-bonds) are, among the 

other intermolecular interactions in DNA, the most distinctive in term of specificity of molecular 

bonds. As H-bonds account for specificity, we only consider the dynamics affected by H-bonds 

between DNA base pairs and H-bonds connecting protein side chains and DNA. The H-bonds 

are modelled by Morse potentials and coupling terms in the Hamiltonian of coupled oscillators 

resembling a coupling between planar DNA chain and a protein molecule. In this paper we give 

a perturbative approach as an attempt for a soliton solution. The solution is in the form of 

nonlinear travelling wave having the amplitudes satisfying coupled nonlinear Schrödinger 

equations and is interpreted as the mediator for nonlocal transmittance of biological information 

in DNA. 

1.  Introduction 

The dynamics of deoxyribonucleic acid (DNA) and its interaction to proteins is one of the most 

fascinating conundrum in biophysics because it constitutes the fundamental basis of life. The 

information transfer between proteins in the process of DNA transcription and replication has to be 

highly efficient and lossless to maintain the macroscopic life around us over the ages. However, an intact 

dynamical modelling is difficult due to the complexity of the role of regulatory proteins in DNA such 

as RNA polymerases. Thus, here we are simplifying the problem by examining only the significant 

aspects of DNA-protein binding. 

The idea of nonlinear solitonic excitations in DNA has established in the past decades [1–3], the 

notion of the soliton is due to the ability of DNA to maintain a lossless transfer of information along 

vast distances—which cannot be satisfied with simple linear waves. Of interest here is the breather type 

of excitation which correspond to DNA denaturation bubbles by Peyrard and Bishop (PB) [2], they 

developed a statistical approach of the local base pair opening which precede the denaturation process. 

Later the dynamics and thermal effects of PB breather in presence of external potential are investigated 

[4, 5], giving the picture on how DNA and external perturbations behave. Regulatory protein would 

increase the breather amplitude as shown in [6] via nonequilibrium statistical calculations. A further 

effect of the oscillatory mode of the protein itself is examined on a thermal bath by [7]. 

Origins of the specificity in DNA-protein recognition rely on the unique chemical signatures of the 

base sequences and the sequence-independent DNA shapes [8–10]. The proteins can ''feel'' the DNA 

surface shapes and simultaneously recognize the sequences in virtue of electrostatic, van der Waals', 
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and H-bond interactions. However, not all of the interactions give significant contribution to the site 

specificity. The hydrogen bonds role the specific base readout more significantly than the other 

interactions, since the transition free energy between best specific binding and nonspecific binding is 

approximately 16 𝑘B𝑇 below the specific binding energy [11] (experimentally, for instance, 17 𝑘B𝑇 for 

Mnt and ≈16 𝑘B𝑇 for lac repressor [12]). As a comparison, the nonspecific binding free energy of the 

repressor protein CI in 𝜆-virus-infected E. coli cells (in vivo) was estimated as only 7 𝑘B𝑇 [11]. 

In this paper, we present a new model governing the dynamics of the site-specific DNA-protein 

interaction. We assume a simple, untwisted, ladder-like DNA double strand interacting with a regulatory 

protein through the hydrogen bonding between functional groups of the protein side chains and the bases 

in the major groove of the DNA chain. Here the DNA chain contains inhomogeneous base sequences, 

which would allow the specific binding. Any environmental effects such as the presence of the solution 

are neglected at this stage. 

2.  The dynamical model 

Our aim is to examine the dynamics of the binding between regulatory proteins and DNA through the 

mathematical solution and its properties in agreement with biological observations [13, 14]. Here we 

would like to focus our attention on the major correspondent of the specific DNA-protein interaction, 

namely the H-bonds. These bonds are linking between protein side chains and groups of bases inside 

DNA chain and are responsible for the binding specificity. Proteins are composed of many amino acids 

which linked together by peptide bonds, practically the side chains which interact with DNA are the 

amino acids or the peptide bonds. This interaction occurs mainly in DNA major groove and affecting 

the H-bonds inside DNA nucleotides. 

In this paper we model the effect of existing protein to the DNA chain. We conjecture that the 

existence of regulatory proteins near DNA trigger pulse type excitations of the DNA base pairs, this 

kind of excitations referred as DNA bubbles and are well described by the PB solitonic breathers. These 

propagating solitons carry important genetic information through the DNA and provide an effective 

communication between two separated proteins binding DNA in vast distances. Our model includes two 

degrees of freedom, 𝑥𝑚 corresponds to the stretching of H-bonds linking a protein side chain and a side 

chain, and 𝑦𝑛 is the stretching of H-bonds that connect two DNA bases in a pair. The indices are labelling 

locations in DNA. We simplify the complex DNA-protein to a coupled nonlinear oscillator. Nonlinearity 

arises while we consider the Morse potential to model a group of H-bonds, the potential permits breaking 

of the bonds when largely stretched. The stacking between base pairs is assumed harmonic at this stage. 

Thus, our model Hamiltonian is 

 𝐻 = 𝐻DNA  + 𝐻prot  +  𝐻int (1) 

where 

 𝐻DNA = ∑
𝑝𝑦𝑛

2

2𝑚
+ 𝐷(𝒁)(e−𝛼𝑦𝑛 − 1)2 +

𝑘

2
(𝑦𝑛 − 𝑦𝑛−1)2

𝑛  . (2) 

The base nucleotide mass $m$ and momentum 𝑝𝑦𝑛 are homogenous. The Morse potential depth 𝐷(𝐙) is 

the strength of the bonding between bases (the chain is at 𝐙-direction) and 𝛼 is the inverse width of the 

well, 𝑘 is the harmonic coupling of the longitudinal springs connecting the base pairs. 𝐻prot contains 

the Morse potential between a protein and a nearest base pair of DNA, 

 𝐻prot =
𝑝𝑥𝑚

2

2𝑀
+ 𝐸(e−𝛽𝑥𝑚 −  1)

2
, (3) 

the model is ready to be applied in the case of many proteins, but here we only consider one. Finally, 

the interaction between these two bonds takes a simple but rather general form, 

 𝐻int = ∑
𝜒

2
𝑥𝑚

𝑎 𝑦𝑛
𝑏

𝑛 . (4) 
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Here we take a constant potential well depth 𝐸 as we assume this to be only protein dependent i.e. 

independent of DNA site; while 𝛽 is just the inverse width of the well. The coupling constant 𝜒 

determine the sensitivity and the strength of the interaction, the value is not specified and could be set 

to fit the reality. In this model the depths 𝐷(𝒁) and 𝐸 define the specificity of DNA-protein interaction, 

the values could be determined via experiments (such as in [15]).  

To prove that the model is plausible, the qualitative dynamics need to be depicted. This had been 

done by studying this model stability and phase portraits [16]. The stability was examined with the 

integer powers 𝑎 = 2 and 𝑏 = 1, the value was taken by assuming the one-way DNA interaction i.e. 

DNA base pair stretch (𝑦𝑛) is coupled by protein only (via 𝑥𝑚
2 ), not by DNA itself. This can be 

understood by deriving the equations of motion from the Hamiltonian, but this time we will show that 

we can pick 𝑎 and 𝑏 without the assumptions. This will be made clear after we expand the equations for 

small 𝑥 and 𝑦 in the next section. 

3.  Nonlinear excitations in the DNA-protein interaction 

This section will discuss on how the interaction occurs, that is, how the protein induces DNA bubbles 

that precede the total opening of the double helix (i.e. the denaturation process). To explore this aspect, 

we examine the nonlinear excitations related to the Hamiltonian system. 

First we consider the equations of motion derived from the Hamiltonian, 

 𝑚𝑦̈𝑙  =   2𝛼𝐷(𝐙)(e−2𝛼𝑦𝑙 − 𝑒−𝛼𝑦𝑙) + 𝑘(𝑦𝑙+1 − 2𝑦𝑙 + 𝑦𝑙−1) −
𝑏

2
𝜒𝑥𝑚

𝑎 𝑦𝑙
𝑏−1 ,  

 𝑀𝑥̈𝑚 =  2𝛽𝐸(e−2𝛽𝑥𝑚 − 𝑒−𝛽𝑥𝑚) −
𝑎

2
𝜒𝑥𝑚

𝑎−1 ∑  𝑦𝑙
𝑏

𝑙  . (5) 

According to the PB approach [17] it is assumed that the oscillations of bases are large enough to be 

anharmonic, but still insufficient to break the H-bond since the Morse potential plateau is not yet 

reached. In our model the protein-DNA bond 𝑥 is also presumed by the same way. Here the base 

stretching 𝑦 and the DNA-protein stretching 𝑥 oscillate around the bottom of the symmetric potential so 

the following transformation can be safely implemented: 

 𝑌𝑛 = 𝜖𝜙𝑛      and      𝑋𝑚 = 𝜖𝜓𝑚 , (6) 

where 𝜖 is small and 𝑌 ≡ 𝛼𝑦, 𝑋 ≡ 𝛽𝑥. The continuum approximation is used for now as a first step to 

construct a solution. We use perturbative approach to obtain a solitonic solution. Inserting this into (5) 

with continuum limit and expanding in basis 𝜖𝑛, we get (with 𝑧0 replacing 𝑚) 

 𝜙𝑡𝑡 −  𝑆𝜙𝑧𝑧  +  𝑉(𝐙) (𝜙 −
3

2
𝜖𝜙2  +

7

6
𝜖2𝜙3 + 𝑂(𝜖3)) +

𝜇

2
𝜖𝑎+𝑏−2𝜓𝑎|(𝒁=𝒁𝟎)𝜙𝑏−1 = 0 

    (at 𝐙 = 𝐙0)           𝜓𝑡𝑡  +  𝑊 (𝜓 −
3

2
𝜖𝜓2 +

7

6
𝜖2𝜓3 + 𝑂(𝜖3)) + 𝜂𝜖𝑎+𝑏−2𝜓𝑎−1∫ 𝜙𝑏d𝐙 = 0 (7) 

where we have dropped the indices for simplicity and defined 

 𝑉(𝐙) =
2𝛼2𝐷(𝐙)

𝑚
,   𝑊 =

2𝛽2𝐸

𝑀
,   𝑆 =

𝐾

𝑚
,   𝜇 = 𝜒

𝑏𝛼2−𝑏

2𝑚𝛽𝑎 ,   𝜂 = 𝜒
𝑎𝛽2−𝑎

2𝑀𝛼𝑏  (8) 

From here we look straightforward perturbative solution 

 𝜙 = 𝜙(0) + 𝜖𝜙(1) + ⋯ ,     𝜓 = 𝜓(0) + 𝜖𝜓(1) + ⋯. (9) 

The solutions are examined only up to order 𝜖 to get the nonlinear excitations consisting of second 

harmonics, which in case of PB model are the breather solitons. For this to be realised, every order of 

 𝜖𝑛 in above equations should contain time or spatial derivatives, thus we use multiple-scale method 

[18]. Here 𝜓 and 𝜙 depend on the independent variables 𝑧0,  𝑧1, … and 𝑡0, 𝑡1, … where 𝑧𝑚 = 𝜖𝑚𝑧 and 

𝑡𝑛 = 𝜖𝑛𝑡 so that the operators 𝜕/𝜕𝑧 and 𝜕/𝜕𝑡 are expanded as 
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𝜕

𝜕𝐙
=

𝜕

𝜕𝑧0
+ 𝜖

𝜕

𝜕𝑧1
+ 𝜖2 𝜕

𝜕𝑧2
+ ⋯,   

𝜕

𝜕𝑡
=

𝜕

𝜕𝑡0
+ 𝜖

𝜕

𝜕𝑡1
+ 𝜖2 𝜕

𝜕𝑡2
+ ⋯. (10) 

This method is actually looking for solutions that variate (oscillate) in independent time and spatial 

scales, it has the advantage that the solution is accurate up to 𝑧 = 𝑂(1/𝜖𝑚) and 𝑡 = 𝑂(1/𝜖𝑛). For 

instance, the term 𝑓(𝑡1) ∝ exp(𝑖𝜃(𝑡1)) oscillates slower than the term dependent on 𝑡0. In our model 

the 𝑡1 term acts as the envelope wave for the 𝑡0 term. This kind of behavior had previously been 

inspected in [19] for single nonlinear oscillator, it is shown that the multiple-scale method gives an 

envelope wave which the first harmonic amplitude satisfies nonlinear Schrödinger equation (NLS). In 

this paper we are generalising the method for a coupled equations. 

From equations (5) we chose the integer powers 𝑎 + 𝑏 = 3 so that the interaction plays the role in 

𝑂(𝜖) terms and is not ruining 𝜙(0) or 𝜓(0). It can be chosen in general 𝑎 + 𝑏 > 2, depending on what 

order 𝜖 the interaction is wanted to affect. Here we the lowest power state 𝐻int =
1

2
𝜒𝑥𝑚

2 𝑦𝑛. We use 

multiple scales up to 𝑡2 and 𝑧1, the asymmetry of this choice will be clear after the equations governing 

the amplitudes are observed. For simplicity hereafter, we write 𝑧 ≡ 𝑧0, 𝑍 ≡ 𝑧1, 𝑡 ≡ 𝑡0, 𝑇 ≡ 𝑡1, and 𝜏 ≡
𝑡2. Inserting (9) and (10) into (7), we get 

 𝑂(𝜖0):   𝜙𝑡𝑡
(0)

− 𝑆𝜙𝑧𝑧
(0)

+ 𝑉(𝑧)𝜙(0)  =  0 

                                   𝜓𝑡𝑡
(0)

+ 𝑊𝜓(0)  =  0  (11) 

 𝑂(𝜖1):    𝜙𝑡𝑡
(1)

− 𝑆𝜙𝑧𝑧
(1)

+ 𝑉(𝑧)𝜙(1) =  −2 (𝜙𝑡𝑇
(0)

− 𝑆𝜙𝑧𝑍
(0)

) +
3

2
𝑉(𝑧)(𝜙(0))

2
−

𝜇

2
(𝜙(0))

2
 

                                    𝜓𝑡𝑡
(1)

+ 𝑊𝜓(1) =  −𝜓𝑡𝑇
(0)

+
3

2
𝑊(𝜓(0))

2
− 𝜂𝜓(0)∫ ∫ 𝜙((0))d𝑧d𝑍 (12) 

 𝑂(𝜖2):   𝜙𝑡𝑡
(2)

− 𝑆𝜙𝑧𝑧
(2)

+ 𝑉(𝑧)𝜙(2)  =  −2 (𝜙𝑡𝑇
(1)

− 𝑆𝜙𝑧𝑍
(1)

) − (𝜙𝑇𝑇
(0)

− 𝑆𝜙𝑍𝑍
(0)

) − 2𝜙𝑡𝑇
(0)

+ 3𝑉(𝑧)𝜙(0)𝜙(1) 

      −
7

6
𝑉(𝑧)(𝜙(0))

3
− 𝜇𝜓(0)𝜓(1) 

          𝜓𝑡𝑡
(2)

+ 𝑊𝜓(2) =  −2𝜓𝑡𝑇
(1)

− 𝜓𝑇𝑇
(0)

− 2𝜓𝑡𝜏
(0)

+ 3𝑊𝜓(0)𝜓(1) −
7

6
𝑊(𝜓(0))

3
 

                                    −𝜂 (𝜓(1)∫ ∫ 𝜙(0)d𝑧d𝑍 + 𝜓(0)∫ ∫ 𝜙(1)𝑑𝑧𝑑𝑍) (13) 

We have broken down the nonlinear problem into several inhomogeneous linear differential equations 

where the solutions as follows, 

 𝜙(0)  =  𝐴1(𝑍, 𝑇, 𝜏)ei𝜃 + c. c.,       𝜓(0) = 𝐴2(𝑍, 𝑇, 𝜏, 𝑧)ei𝜑 + 𝑐. 𝑐., 

 𝜙(1)  =  3|𝐴1|2 −
𝜇

𝑉(𝑧)
|𝐴2|𝑧=𝑧0

2 −
1

2
𝐴1

2e2i𝜃 +
𝜇

6𝑉(𝑧)
𝐴2|𝑧=𝑧0

2 e2i𝜑 + c. c., 

 𝜓(1)  =  3|𝐴2|2 −
1

2
𝐴2

2e2i𝜑 + c. c. +η [
𝐴2∫ 𝐴1d𝑍

𝜔2+2𝜔√𝑊
ei(𝜃+𝜑) +

𝐴2
∗ ∫ 𝐴1𝑑𝑍

𝜔2−2𝜔√𝑊
𝑒𝑖(𝜃−𝜑) + c. c. ] 𝛿(𝑘).  

The envelopes 𝐴1 and 𝐴2, by zeroing the secular terms (exp(±i𝜃) and exp(±i𝜑)) in 𝑂(𝜖2), meet these 

conditions: 

 i
𝜕𝐴1

𝜕𝜏
+ 𝑃1

𝜕2𝐴1

𝜕𝜉2 + 𝑄1|𝐴1|2𝐴1 = 𝜇 [3 +
2𝜂

𝜔2−4𝑊
] |𝐴2|2𝐴1, 

 i
𝜕𝐴2

𝜕𝜏
+ 𝑃2

𝜕2𝐴2

𝜕𝑇2 + 𝑄2|𝐴2|2𝐴2 = 𝜂 [3 +
2𝜂

𝜔2−4𝑊
] ∫ |𝐴1|2𝑑𝑍 𝐴2, (14) 

after we introduce a right moving coordinate where 𝜉 = 𝑍 − 𝑣𝑔𝑇. Here if we use scale 𝜖2𝑧 we have to 

introduce the coordinate moving to left, 𝜖2𝑧 + 𝑣𝑔𝜏, to form the NLS. This is contrary to our right moving 
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coordinate so we cannot use this. The coefficients are $𝑃1 = (𝑆 − 𝑣𝑔)/2𝜔, 𝑄1 = 4𝑉(𝑧), 𝑃2 =

−(2√𝑊)
−1

, and 𝑄2 = 4𝑊 + 5𝜇𝜂/(6𝑉(𝑧)). These are in the form of coupled nonlinear Schrödinger 

(NLS) equation and the solutions have been widely investigated [20]. 

We look the solution having the type of bright soliton that is under condition 𝑃𝑖𝑄𝑖 > 0 [20]. The one-

soliton solution of 𝐴1 and 𝐴2 when inserted to our full solution will enable a particular breathing mode, 

this is interpreted as the denaturation bubbles. Further analysis to the solution could bring us to a deeper 

understanding of the dynamical excitation of DNA bubbles when triggered by a regulatory protein in 

some specific regions. It is also an interesting question that whether the model can represent the lowering 

of denaturation free energy as seen from experiments [11, and references therein]. The complete solution 

and its analysis are in progress. 

References 

[1] Englander S, Kallenbach N, Heeger A, Krumhansl J and Litwin S 1980 Proc. Nat. Acad. Sci. 77 

7222–7226  

[2] Peyrard M and Bishop A R 1989 Physical review letters 62 2755  

[3] Yakushevich L 1989 Physics Letters A 136 413–417 

[4] Sulaiman A, Zen F P, Alatas H and Handoko L T 2012 Physica D: Nonlinear Phenomena 241 

1640–1647 

[5] Sulaiman A, Zen F P, Alatas H and Handoko L T 2012 Physica Scripta 86 015802 

[6] Satarić M and Tuszynski J 2002 Physical Review E 65 051901 

[7] Sulaiman A, Zen F P, Alatas H and Handoko L T 2010 Physical Review E 81 061907  

[8] Rohs R, Jin X, West S M, Joshi R, Honig B and Mann R S 2010 Ann. Rev. of biochem. 79 233 

[9] Halford S E and Marko J F 2004 Nucleic acids research 32 3040–3052 

[10] Von Hippel P H and Berg O G 1986 Proc. Nat. Acad. Sci. 83 1608–1612 

[11] Williams M C and Maher J L 2010 Biophysics of DNA-protein interactions: from single molecules 

to biological systems (Springer Science & Business Media) 

[12] Gerland U, Moroz J D and Hwa T 2002 Proc. Nat. Acad. Sci. 99 12015–12020 

[13] Wang J C and Giaever G N 1988 Science 240 300–304 

[14] Hogan M, Dattagupta N and Crothers D 1979 Nature 278 521–524 

[15] Gao Y, Devi-Prasad K and Prohofsky E 1984 The Journal of Chemical Physics 80 6291–6298 

[16] Dwiputra D, Hidayat W, Khairani R and Zen F P 2015 Nonlinear model of specific DNA-protein 

interactions and its stability (unpublished), submitted at the 6th asian physics symposium 

[17] Peyrard M 2004 Nonlinearity 17 R1 

[18] Jakobsen P 2013 Introduction to the method of multiple scales Preprint arXiv:1312.3651 

[19] Remoissenet M 1986 Physical Review B 33 2386 

[20] Radhakrishnan R and Lakshmanan M 1995 J. Phys. A: Mathematical and General 28 2683 

Acknowledgements 

The authors would like to thank Ministry of Research Technology and Higher Education of Republic of 

Indonesia for research funding Desentralisasi 2015 and Desentralisasi 2016. DD thanks the members of 

Theoretical Physics Laboratory ITB for hospitality. 

 

13th South-East Asian Congress of Medical Physics 2015 (SEACOMP) IOP Publishing
Journal of Physics: Conference Series 694 (2016) 012076 doi:10.1088/1742-6596/694/1/012076

5


