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Abstract. A two-four finite difference scheme for Boussinesq equations was developed by
Mohapatra and Chaudhry in 2004. This scheme is of course also applicable to solve the shallow
water equations. However this scheme is not robust to deal with dry bed, that is, spurious
oscillations appear around wet-dry areas. In this paper we propose a modified two-four finite
difference scheme to solve the shallow water equations involving (almost) dry bed. The modified
scheme has fewer number of divisions by zero or almost zero, and at the same time, only
conserved quantities (mass and momentum) are used in the evolution of the new scheme. The
modification lies on the discretisation of the momentum equation. We discretise the momentum
equation using the momentum variable itself rather than using the velocity variable as done by
Mohapatra and Chaudhry. Numerical results show that our proposed scheme is more robust for
wetting and drying processes of the shallow water equations.

1. Introduction
Shallow water flows can be described using a mathematical model, such as the system of either
shallow water equations or Boussinesq equations. These equations have been used to simulate
river flows, floods, and even tsunamis. Therefore, accurately solving these equations is very
important.

Mohapatra and Chaudhry [6] simulated dam-break flows numerically by solving the one-
dimensional Boussinesq equations using a two-four explicit finite-difference scheme. Readers
interested in the analytical study of the Mohapatra–Chaudhry scheme are referred to [6]
and references therein. The Mohapatra–Chaudhry scheme was validated by comparing the
computed results with the Stoker solution [13, 14], yielded satisfactory results for dam-break
flow studies. Their numerical tests were based on a wet bed assumption, in which the upstream
and downstream positions are wet. However, in actual flow situation, there is another problem,
known as a dry bed problem, in which the downstream depth is close to or absolutely zero. The
Mohapatra–Chaudhry scheme is not robust to deal with dry bed, because the scheme produces
spurious oscillations around wet-dry areas.

When solving the dry bed problem, numerical schemes usually face extra challenges.
Supercritical and subcritical flows may coexist for flow in horizontal [1, 2, 4]. A difficulty in
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dealing with simulation of dam-break flows on a dry bed lies in the downstream boundary
conditions of the flow field, where the flow depth goes to zero [15]. There may also be
discontinuity in the velocity at the wet-dry interface, whereas the depth and momentum values
are continuous.

To overcome the wet-dry problem, in this paper we propose a modified Mohapatra–Chaudhry
scheme, in which only conserved quantities (mass and momentum) are used in the evolution of
the new scheme, to solve the shallow water equations. Numerical results show that our proposed
scheme performs better for wetting and drying processes of the shallow water equations than
the original Mohapatra–Chaudhry scheme.

2. Governing equations
Consider one-dimensional shallow water equations, which are written as continuity and
momentum equations [6]:

∂h

∂t
+

∂(uh)

∂x
= 0, (1)

∂(uh)

∂t
+

∂

∂x

(
u2h +

gh2

2

)
= gh (S0 − Sf ) , (2)

where x denotes the longitudinal direction; u represents the depth-averaged velocity in the x-
direction; t is the time variable; h denotes the flow depth; g represents the acceleration due to
gravity; S0 is the bed slope in the x-direction; and Sf is the friction slope in the x-direction.
The friction slope, Sf , is calculated from the Manning equation

Sf =
u2n2

h4/3
(3)

with n is the Manning roughness coefficient and the channel is assumed to be wide and
rectangular. A simplification and an extension of the one-dimensional shallow water equations
were discussed in some literatures, such as Mungkasi and Roberts [8, 9, 11, 12].

The derivation of the above equations is based on assumption that the velocity in the vertical
direction varies linearly from zero at the bed to the maximum value at the surface. The
governing equations do not account for the effective stresses arising due to laminar viscous
stresses, turbulence stresses and stresses due to depth averaging. Note that the shallow water
equations are special cases of the Boussinesq equations with the values of Boussinesq terms are
zero.

3. Numerical model
There are mathematical and physical reasons why the Mohapatra–Chaudhry scheme needs
modification for dry bed involvement in solving the shallow water equations. Mathematically,
the Mohapatra–Chaudhry scheme has two divisions by zero or almost zero number for calculating
the velocity. That is, one division occurs in the predictor step and another one in the corrector
step. These divisions make the computation results tend to large numbers, and hence, give
large errors. Physically, evolving the velocity in the predictor and corrector steps is not the
best option when there exists discontinuity in the solution, because velocity is not a conserved
quantity.

Therefore, we propose a modified scheme having fewer number of divisions by zero or almost
zero, and at the same time, only conserved quantities (mass and momentum) are used in
the evolution of the new scheme. Similar to the Mohapatra–Chaudhry scheme, the governing
equations (Eqs. (1) and (2)) are solved using a two-four finite difference scheme on collocated
grids. However in the modified scheme, the momentum equation in Eq. (2) is discretised
using the momentum variable q = uh. For each iteration, variables hk+1 and (uh)k+1 at an
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unknown time t + ∆t are computed explicitly from variables hk and (uh)k at the known time t
in three phases. First, a predictor procedure yields predicted variables hp and (uh)p. Second,
a corrector procedure produces corrected variables hc and (uh)c. Third, the flow field (h̃, ũh)
is then computed by taking the average of the variables at the known time level, k, and the
corrector part. The solution of the third phase will be the final approximate solution at time
t + ∆t.

3.1. Predictor part
The predicted water level variable is the same as in the Mohapatra–Chaudhry scheme. It is
obtained from the known variables by using the forward finite differencing for both the time and
space derivatives, as follows

hpi = hki +
1

6

∆t

∆x
[(uh)ki+2 − 8 (uh)ki+1 + 7 (uh)ki ]. (4)

The equation to compute the predicted velocity variable in the Mohapatra–Chaudhry scheme
is modified to obtain the predicted momentum variable:

(uh)pi = (uh)ki +
1

6

∆t

∆x
{(T )ki+2 − 8 (T )ki+1 + 7 (T )ki }+ ∆tghki (S0 − Sf ) , (5)

where

T = u2h +
gh2

2
. (6)

Notice that in this predicted part we evaluate the predicted momentum variable directly,
without computing the predicted velocity variable.

3.2. Corrector part
The corrected water level variable in the modified scheme is obtained from the predicted variables
by using the forward finite differencing for the time derivatives and backward finite differencing
for the space derivatives, as in the Mohapatra–Chaudhry scheme:

hci = hpi +
1

6

∆t

∆x
[− (uh)pi−2 + 8 (uh)pi−1 − 7 (uh)pi ]. (7)

As in the predictor part, the equation to compute the corrected velocity variable in the
Mohapatra–Chaudry scheme is modified to obtain the corrected momentum variable:

(uh)ci = (uh)pi +
1

6

∆t

∆x
{− (T )pi−2 + 8 (T )pi−1 − 7 (T )pi }+ ∆tghpi (S0 − Sf ) . (8)

Variable T in Eq. (8) is the same as that given in Eq. (6).
As in the predicted part, the corrector velocity variable is not evaluated in this corrector

part. The solutions of the predictor-corrector procedure in the modified scheme are the values
of water depth and momentum.

3.3. Final step
Flow variables (h̃, ũh) are then evaluated by taking the average of variable values at the known
time level k and the corrector part:

h̃i =
hki + hci

2
, (9)

˜(uh)i =
(uh)ki + (uh)ci

2
. (10)
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In case the velocity values are desired, it can be computed as

ũi =
˜(uh)i
h̃i

. (11)

The values of water depth and momentum at the end of each time step are smoothened
by utilising the artificial viscosity procedure [5]. The smoothened values are then used for the
next interation. Note that the artificial viscosity procedure is used in order to be consistent
with Mohapatra–Chaudhry’s paper. By numerical experiments we have found that the artificial
viscosity procedure stabilises the solution near vacuum.

3.4. Initial and boundary conditions
As the modified scheme uses the variables h and q = uh for discretisation, it is necessary to
adjust the initial and boundary conditions of the variables, as follows:

The inital condition, at t = 0.0, is given

hi = hu for i ≤ idam, (12)

hi = hd for i > idam, (13)

(uh)i = 0.0 for all i, (14)

and the boundary condition, at t > 0.0, is given

h1 = h2 = h3 = hu, (15)

hilast = hilast−1 = hilast−2 = hd, (16)

(uh)1 = (uh)2 = (uh)3 = 0.0, (17)

(uh)ilast = (uh)ilast−1 = (uh)ilast−2 = 0.0. (18)

The time step ∆t is computed using the stability condition governed by the Courant–
Friedrichs–Lewy (CFL) condition. The necessary condition for stability of the two-four scheme
is that:

∆t = Cn
∆x

max(|u|+
√
gh)

, (19)

where Cn ≤ 2/3, is satisfied [3]. Here Cn is the Courant number, which is also known as the
CFL number.

4. Results
In this section, the modified scheme is used to solve the shallow water equations to simulate
dam-break flows on wet and dry bed, with flat bottom without friction. The problem is set by
equations (1) and (2), where the bed slope S0 = 0.0, and the friction slope Sf = 0.0, with initial
conditions

u(x, 0) = 0 and h(x, 0) =

{
hu if x < x0

hd if x > x0
(20)

both hu and hd are nonnegative and hu > hd. At time t = 0, the dam wall is immediately
removed and the water on upstream flows to the downstream at the subsequent time t, as
illustrated in Figure 1.

The modified scheme is validated by comparing its results with those of the Mopatra-
Chaudhry scheme and the analytical solution to the shallow water equations (see [7, 10, 13, 14]
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Figure 1. Schematic illustration of the solution to the dam-break problem with a finite water
depth downstream at time t > 0
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Figure 2. Water profile of dam-break on a wet bed at t = 5, with hu = 1.0 and hd = 0.5

for derivation of the analytical solution). For this purpose, the following input parameters are
used: channel length, L = 50.0; dam location, Ld = 25.0; initial velocity is zero; acceleration
due to gravity, g = 9.8; Manning roughness coefficient, n = 0; Courant number, Cn = 0.6.

For the dam-break problem over wet bed, we consider two cases: dam with the initial water
depth in the upstream, hu = 1.0, the initial downstream level are hd = 0.5 and hd = 0.2
respectively, and the simulation time is t = 5.0. The results are shown in Figure 2 and Figure 3,
which both demonstrate that numerical results of the modified scheme have a better agreement
with the analytical solution than the results of the Mohapatra–Chaudhry scheme.
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Figure 3. Water profile of dam-break on a wet bed at t = 5, with hu = 1.0 and hd = 0.2

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

Water surface at time t=1.000

 

 

analytical solution
modified scheme
Mohapatra−Chaudhry

0 5 10 15 20 25 30 35 40 45 50

−5

0

5

Water velocity at time t=1.000

 

 

analytical solution
modified scheme
Mohapatra−Chaudhry

Figure 4. Water profile of dam-break on a dry bed at t = 1, with hu = 1.0 and hd = 10−9
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In case the initial downstream level is zero (almost zero), that is a dry bed problem (almost
dry), in this simulation we consider hd = 10−9. Figure 4 ilustrates the water profile at t = 1 after
the dam destruction. This shows that the modified scheme is more robust for wetting process
of the shallow water equations. If we simulate for a large time value, the Mohapatra–Chaudhry
scheme is unstable even though the CFL condition is satisfied. Note that the CFL condition is
a necessary condition for stability, and not the sufficient condition.

5. Conclusions
A modified two-four finite difference scheme is utilised to solve the shallow water equations
for simulating dam-break flows over wet and dry bed. We modify the discretisation of the
momentum equation from using the velocity variable, as done by Mohapatra and Chaudhry, to
using the momentum variable itself. Numerical results show that the scheme is more accurate
for wetting process of the shallow water equations. This suggests that the scheme is also robust
for wetting and drying processes.
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