
Legendre Wavelet Operational Matrix of fractional
Derivative through wavelet-polynomial
transformation and its Applications in Solving
Fractional Order Brusselator system

Phang Chang and Abdulnasir Isah
Department of Mathematics and Statistics
University Tun Hussein Onn Malaysia

E-mail: pchang@uthm.edu.my, abdulnasir.isah@gmail.com

Abstract. In this paper we propose the wavelet operational method based on shifted Legendre
polynomial to obtain the numerical solutions of nonlinear fractional-order chaotic system
known by fractional-order Brusselator system. The operational matrices of fractional derivative
and collocation method turn the nonlinear fractional-order Brusselator system to a system of
algebraic equations. Two illustrative examples are given in order to demonstrate the accuracy
and simplicity of the proposed techniques.

1. Introduction
Fractional calculus has gained an increasing popularity due to its wide range of applications
in the fields of engineering, chemistry, finance, physics, aerodynamics, electrodynamics,
polymer rheology, economics, biophysics, control theory and so on.[1]-[6]. The development
of fractional calculus is being investigated by numerous researchers in different ways through
modelling and simulation of systems and processes, based on the description of their
properties in terms of fractional derivatives which naturally lead to the formulation of
fractional differential equations (FDEs). In most cases, the solution of the FDEs does not
exist in terms of a finite number of elementary functions, it is therefore fundamental to
device numerical methods in order to practically evaluate approximated solutions by means
of different schemes and approaches, as such several methods for solving FDEs are available
in open literature, Adomian decomposition method [6], variational iteration method [7],
homotopy perturbation method [8], predictor-corrector method [9] are some of the few
examples. Recently, the idea of approximating the solution of FDEs by orthogonal family of
basis functions have been widely used and the most frequently used orthogonal function are
sine-cosine functions, block pulse functions, Legendre polynomials, Chebyshev polynomials
and Laguerre polynomials. The main idea of using an orthogonal basis is that the problem
under consideration reduces to a system of linear or nonlinear algebraic equations [10]. This
can be done by truncated series of orthogonal basis function for the solution of the problem
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and using the operational matrices [11]
Wavelets are localized functions, which form the basis for L2(R), so that localized pulse
problems can easily be approached and analysed [12]. They are successfully applied in system
analysis, optimal control, signal analysis and many more areas see [13]. However, wavelets
are just another basis set which offers considerable advantages over alternative basis sets
and allows us to tackle problems not accessible with conventional numerical methods, these
main advantages are discussed in [14]. Legendre wavelets as a specific kind of wavelets has
been widely applied for solving FDEs, for example see [10, 13, 15, 16, 17], at this juncture,
it is worth mentioning that Legendre wavelets has mutual spectral accuracy, orthogonality
and other useful properties of wavelets. The main purpose of this paper is to apply Legendre
wavelets operational method to obtain the numerical solution of the nonlinear fractional-order
Brusselator system given by

Dαy1(x) = a− (µ + 1)y1(x) + y2
1(x)y2(x)

Dβy2(x) = µy1(x)− y2
1(x)y2(x)

(1)

subject to yi(0) = di for i = 1, 2.
where a > 0, µ > 0, α, β ∈ (0, 1] and di are constants.
The equation (1) have been studied by many authors, for example, Gafiychuk and Datsko
investigate the stability of fractional-order Brusselator system in [18]. In [19], Wang and
Li proved that the solution of fractional-order Brusselator system has a limit cycle using
numerical method. Jafari et al. used the variational iteration method to investigate the
approximate solutions of this system [20], in [21] Bernstein polynomial operational matrix
of fractional order integration was used for the approximate solution of the system (1),
polynomial least squares method was also used to obtain the approximate solution of (1)
in [22]. The paper is organised as follows. Section 2 introduce some basic definitions
and mathematical preliminaries of fractional calculus, in section 3 we first defined shifted
Legendre polynomial then, described the basics of wavelets and Legendre wavelets ,in section
4 we introduce the shifted Legendre operational matrix of fractional order derivative and
Legendre wavelet operational matrix of fractional order derivative , in section 5 application
of the Legendre wavelets operational matrix of fractional order derivative together with
collocation method on Brusselator system is shown. In section 6 two numerical examples
are considered to demonstrate the accuracy of the scheme.

2. Preliminaries
2.1. Fractional derivative and integral
Here, we recall some basic definitions and properties of fractional calculus that are used in
this article. There are various definitions for fractional differentiation [2]. The Riemann-
Liouville definition has certain disadvantage when we try to model a real-world phenomenon
[2]. However, the Caputo’s definition is more reliable in application and so we use this
definition for fractional derivatives. But, the most frequently encountered definition of an
integral of fractional order is the Riemann-Liouville integral, in which the fractional integral
operator I of a function f (t) is defined as:

Definition 2.1 By refering to [1] (page 69), the Riemann-Liouville integral I of fractional order α of
f (t) is given by

Iα f (t) =
1

Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ,

t > 0, α ∈ R+

(2)
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Where Γ(̇) is the gamma function, its fractional derivative of order α > 0 is given by

(Dα
l f )(x) =

(
d

dx

)m

(Im−α f )(x),

(α > 0, m− 1 < α < m)

Some properties of Iα are as follows:

Iα Iβ f (t) = Iα+β f (t), α > 0, β > 0 (3)

Iαtβ =
Γ(β + 1)

Γ(β + α + 1)
tβ+α (4)

Definition 2.2 By refering to [1] Theorem 2.1,The Caputo fractional derivative Dα of a function f (t)
is defined as:

Dα f (t) =
1

Γ(n− α)

∫ t

0

f (n)(τ)
(t− τ)α−n+1 dτ (5)

n− 1 < α ≤ n, n ∈N.

The following are some properties of Caputo fractional derivatives

DαC = 0, (C is constant) (6)

Dαtβ =

{
0, β ∈N∪ {0} and β < dαe

Γ(β+1)
Γ(β+1−α)

tβ−α, β ∈N∪ {0} and β ≥ dαe or β /∈N and β > bαc, (7)

Where dαe denote the smallest integer greater than or equal to α and bαc denotes the largest
integer less than or equal to α
Similar to the integer order differentiation, the Caputo fractional differential operator is a lin-
ear operator, since,

Dα(λ f (x) + µg(x)) = λDα f (x) + µDαg(x) (8)

where λ and µ are constants.

3. Legendre Polynomial and Legendre Wavelets
3.1. Shifted Legendre polynomial
The well known Legendre polynomials of degree m are defined on the interval [−1, 1] and can
be determined with the aid of the following recurrence formulae

Lm+1(t) =
2m + 1
m + 1

tLm(t)−
m

m + 1
Lm−1(t),

m = 1, 2, · · · ,

where L0(t) = 1 and L1(t) = t. For one to use these polynomials on the interval [0, 1], we
define the so called shifted Legendre polynomials by using the change of variable t = 2x− 1.
Let the shifted Legendre polynomials Lm(2x − 1) be denoted by Pm(x). Then Pm(x) can be
obtained as follows:

Pm+1(x) =
(2m + 1)(2x− 1)

m + 1
Pm(x)

− m
m + 1

Pm−1(x), m = 1, 2, ...,
(9)
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where P0(x) = 1 and P1(x) = 2x− 1. The analytical form of the shifted Legendre polynomials
Pm(x) of degree m is given by:

Pm(x) =
m

∑
k=0

(−1)m+k (m + k)!xk

(m− k)!(k!)2 . (10)

Note that Pm(0) = (−1)m and Pm(1) = 1. The orthogonality condition is∫ 1

0
Pm(x)Pn(x)dx =

{ 1
2m+1 , f or m = n,
0, f or m 6= n.

(11)

3.2. Wavelets and Legendre Wavelets
Wavelets are family of functions constructed from dilation and translation of a single function
called the mother wavelet. When the dilation parameter a and the translation parameter b
vary continuously we have the following family of continuous wavelets as [?]

ψa,b(t) = |a|
−1
2 ψ

(
t− b

a

)
a, b ∈ R a 6= 0

If we restrict the parameters a and b to discrete values as a = a−k
0 , b = nb0a−k

0 , a0 > 1, b0 >
1, where n and k are positive integers, the family of discrete wavelets are defined as

ψn,k(t) = |a0|
k
2 ψ(ak

0t− nb0)

where ψn,k form a wavelet basis for L2(R).
Legendre wavelets ψn,m(t) = ψ(k, n, m, t) have four arguments: k can assume any positive
integer, m is the order for Legendre polynomials and t is the normalized time. They are
defined on the interval [0, 1] by

ψn,m(t) =

{
2

k+1
2

√
m + 1

2 Lm(2k+1t− (2n + 1)), n
2k ≤ t < n+1

2k

0, otherwise.
(12)

where m = 0, 1, · · · , M and n = 0, 1, · · · , 2k − 1. The coefficient
√

m + 1
2 is for the

orthonormality and the Lm(t) is the well known Legendre polynomial defined in section 3.1
Using shifted Legendre polynomial Pm(t) as defined in section 3.1 one can write the Legendre
Wavelets as

ψn,m(t) =

{
2

k+1
2

√
m + 1

2 Pm(2kt− n), n
2k ≤ t < n+1

2k

0, otherwise.
(13)

with the same range of m and n as in (11).

3.3. Function approximations
Any function f (t) which is square integrable in the interval [0, 1) can be expanded into
Legendre wavelet series as [16]

f (t) =
∞

∑
n=o

∞

∑
m=0

Cn,mψn,m (14)

where the coefficient Cn,m is given by

Cn,m = 〈 f (t), ψn,m(t)〉

ICMAME 2015 IOP Publishing
Journal of Physics: Conference Series 693 (2016) 012001 doi:10.1088/1742-6596/693/1/012001

4



The convergence of the Legendre wavelet series (13) is established in [17]. If the infinite series
in (13) is truncated, then it can be written as

f (t) ≈
2k−1

∑
n=o

M

∑
m=0

Cn,mψn,m = CTΨ(t) (15)

where C and Ψ are 2k(M + 1)× 1 matrices given by

C = [c0,0, c0,1, ..., c0,M, c1,0, c1,1, · · · , c1,M, · · · , c(2k−1),0, c(2k−1),1, · · · , c(2k−1),M]T (16)

Ψ(t) = [ψ0,0, ψ0,1, ..., ψ0,M, ψ1,0, ψ1,1, · · · , ψ1,M, · · · , ψ(2k−1),0, ψ(2k−1),1, · · · , ψ(2k−1),M]T (17)

4. Legendre Wavelet Operational Matrix of Fractional Order Derivative
In this section, we derive the Legendre wavelet operational matrix of the fractional derivative
by first transforming the wavelets to shifted Legendre polynomials, we then make use of the
shifted Legendre operational matrix of the fractional derivative derived in [23], and finally we
derive the Legendre wavelet operational matrix of the fractional derivative.

4.1. Transformation matrix of the Legendre wavelets to Legendre polynomials
An arbitrary function y(t) ∈ L2[0, 1] can be expanded into shifted Legendre polynomials as

y(x) =
M

∑
m=0

rmPm(x) = RΨ′(x)

where the shifted Legendre coefficient vector R and the shifted Legendre vector Ψ′(x) are
given by

R = [r0, r1, · · · , rM] (18)

Ψ′(x) = [P0(x), P1(x), · · · , PM(x)]T (19)

The Legendre wavelet may be expanded in to (M + 1)-terms shifted Legendre polynomials as

Ψ2k(M+1)×1(t) = Φ2k(M+1)×(M+1)Ψ
′
(M+1)×1 (20)

where Φ is the transformation matrix of the Legendre wavelet to Legendre polynomial. E.g
when M = 2 and k = 1 we have

Ψ(t) = [ψ0,0(t), ψ0,1(t), ψ0,2(t), ψ1,0(t), ψ1,1(t), ψ1,2(t)]T

Ψ′(x) = [P0(x), P1(x), P2(x)]T

where

ψ0,0(t) =
√

2 =
√

2P0(t)

ψ0,1(t) =
√

6(4t− 1) =
√

6P0(t) + 2
√

6P1(t)

ψ0,2(t) =
√

10(24t2 − 12t + 1) = 2
√

10P0(t) + 6
√

10P1(t) + 4
√

10P2(t)

 0 ≤ t < 1
2

ψ1,0(t) =
√

2 =
√

2P0(t)

ψ1,1(t) =
√

6(4t− 3) = −
√

6P0(t) + 2
√

6P1(t)

ψ1,2(t) =
√

10(24t2 − 36t + 13) = 3
√

10P0(t)− 6
√

10P1(t) + 4
√

10P2(t)

 1
2 ≤ t < 1
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Thus, in this case

Φ =

{
Φ1 = [ai,j]6×3, 0 ≤ t < 1

2
Φ2 = [bi,j]6×3, 1

2 ≤ t < 1.
where,

Φ1 =



√
2 0 0√
6 2

√
6 0

3
√

10 6
√

10 4
√

10
0 0 0
0 0 0
0 0 0


Φ2 =



0 0 0
0 0 0
0 0 0√

2 0 0
−
√

6 2
√

6 0
3
√

10 −6
√

10 4
√

10


4.2. Shifted Legendre operational matrix of fractional order derivative
The fractional derivative of order α of the vector Ψ′(t) as shown in [23] can be expressed by

DαΨ′(t) = F(α)Ψ′(t), (21)

where F(α) is the (m + 1) × (m + 1) operational matrix of fractional derivative of order α
defined as:

F(α) =



0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

Σdαek=dαeθdαe,0,k

dαe
∑

k=dαe
θdαe,1,k · · ·

dαe
∑

k=dαe
θdαe,m,k

...
... · · ·

...
i

∑
k=dαe

θi,0,k
i

∑
k=dαe

θi,1,k · · ·
i

∑
k=dαe

θi,m,k

...
... · · ·

...
m
∑

k=dαe
θm,0,k

m
∑

k=dαe
θm,1,k · · ·

m
∑

k=dαe
θm,m,k


where θi,j,k is given by:

θi,j,k = (2j + 1)
j

∑
l=0

(−1)i+j+k+l(i + k)!(l + j)!
(i− k)!k!Γ(k− α + 1)(j− l)!(l!)2(k + l − α + 1)

(22)

Check [23] for more details on Fα

4.3. Legendre wavelet operational matrix of fractional order derivative
Now, we derive Legendre wavelet operational matrix of fractional order derivative.
Let

DαΨ(x) = H(α)Ψ(x) (23)
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where H(α) is the Legendre wavelet operational matrix of fractional derivative. Using
Eq.(19) and (20) we get

DαΨ(x) = DαΦΨ′(x) = ΦDαΨ′(x) = ΦF(α)Ψ′(x) (24)

from Eq. (22) and (23) we have

H(α)Ψ(x) = H(α)ΦΨ′(x) = ΦF(α)Ψ′(x) (25)

Thus, the Legendre wavelet operational matrix of fractional derivative H(α) is given by

H(α) = ΦF(α)Φ−1 (26)

5. Applications of Legendre Wavelet Operational Matrix of Fractional Order Derivative on
Fractional Order Brusselator System
To solve problem (1) we first approximate y1(x), y2(x), Dαy1(x), Dβy2(x) as

y1(x) ≈
2k−1

∑
n=0

M

∑
m=0

cn,mψn,m = CTΨ(x) (27)

y2(x) ≈
2k−1

∑
n=0

M

∑
m=0

sn,mψn,m = STΨ(x) (28)

where S = [s0,0, s0,1, ..., s0,M, s1,0, s1,1, · · · , s1,M, · · · , s(2k−1),0, s(2k−1),1, · · · , s(2k−1),M]T and C as
defined in (16) are the unknown vector.
Now, using (23), (27) and (28) we get

Dαy1(x) ≈ CTDαΨ(x) ≈ CTH(α)Ψ(x) (29)

Dβy2(x) ≈ STDβΨ(x) ≈ STH(β)Ψ(x) (30)

Substituting these equations in (1) we get

CTH(α)Ψ(x) = a− (µ + 1)CTΨ(x) + (CTΨ(x))2STΨ(x)

STH(β)Ψ(x) = µCTΨ(x)− (CTΨ(x))2STΨ(x)
(31)

Also, by substituting initial conditions of (1) in to (27) and (28) we have

y1(0) ≈ CTΨ(0) = d1

y2(0) ≈ STΨ(0) = d2
(32)

Now to find the solution y1(x) and y2(x), we collocate (31) at 2k(M + 1) − 2 points. For
suitable collocation points we use the first 2k(M + 1)− 2 shifted Legendre polynomial roots
P2k(M+1)(x), these equations together with (32) generates 2k(M + 1) non-linear equations
which can be solved using Newton’s iterative method. Consequently y1(x) and y2(x) given in
(27) and (28) can be calculated
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6. Illustrative Examples
In this section, we demonstrate the effectiveness of the proposed method by solving two
numerical examples.

Example 6.1 We consider fractional-order Brusselator system given in [21] by

Dαy1(x) = −2y1(x) + y2
1(x)y2(x)

Dβy2(x) = y1(x)− y2
1(x)y2(x)

y1(0) = 1, y2(0) = 1

We use the technique described in section 5 to solve this problem with M = 3 and k = 0, first,
we approximate the equation with Legendre wavelet as follows

CTH(α)Ψ(x) = −2CTΨ(x) + (CTΨ(x))2STΨ(x)

STH(β)Ψ(x) = CTΨ(x)− (CTΨ(x))2STΨ(x)
(33)

For the case α = β = 0.98.
By collocating (33) at the first three roots of P4(x) we obtain six nonlinear algebraic equations.
we also approximate the initial condition as in (32) as,

c00 −
√

3c01 +
√

5c02 −
√

7c03 = 1

s00 −
√

3s01 +
√

5s02 −
√

7s03 = 1
(34)

solving these nonlinear equations together with (34) we obtain the unknown values of C and
S Hence the solutions

y1(x) = 1− 1.0791x + 0.2711x2 − 0.0638x3

y2(x) = 1 + 0.0151x + 0.4185x2 − 0.2624x3

Fig.1 and Fig.2 shows the comparison of this solution with the solution obtain as equation (18)
in [22].

For the case α = β = 1.
The six nonlinear algebraic euations obtained after collocating (33) are solved together with
(34) and we have the solution as

y1(x) = 1− 1.0120x + 0.1211x2 + 0.1517x3

y2(x) = 1 + 0.0096x + 0.4069x2 − 0.2461x3

Fig.4 and Fig.3 shows the comparison of this solution with the solution obtain as equation (19)
in [22]

Example 6.2 We consider the following Brusselator system solved in [20]

Dαy1(x) = 0.5− 1.1y1(x) + y2
1(x)y2(x)

Dβy2(x) = 0.1y1(x)− y2
1(x)y2(x)

y1(0) = 0.4, y2(0) = 1.5

We use the same technique described in section 5 as utilized in the first example. Fig.5
and Fig.6 shows the comparison of the solutions y1(x) and y2(x) with the solution obtain
as equation (19) in [20]
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Figure 1. Comparison of y1 and
PLSM y1 when α = β = 0.98 for
example 6.1

Figure 2. Comparison of y2 and
PLSM y2 when α = β = 0.98 for
example 6.1

Figure 3. Comparison of y1 and
PLSM y1 when α = β = 1 for
example 6.1

Figure 4. Comparison of y2 and
PLSM y2 when α = β = 1 for
example 6.1

7. Conclusion
A general formulation for the Legendre wavelet operational matrix of fractional order
derivative has been derived through wavelet-polynomial transformation, the procedure is
easy to use and yet obtain a very good result. This matrix is used to approximate numerical
solution of fractional order Brusselator system. Our numerical findings are compared with
previous results and it illustrates the accuracy of the method.
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Figure 5. Comparison of y1 and
VIM y1 when α = β = 0.98 for
example 6.2

Figure 6. Comparison of y2 and
VIM y2 when α = β = 0.98 for
example 6.2
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