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Abstract. Power factor correction converters are used in many applications as AC-DC power
supplies aiming at maintaining a near unity power factor. Systems of this type are known to
exhibit nonlinear phenomena such as sub-harmonic oscillations and chaotic regimes that cannot
be described by traditional averaged models. In this paper, we derive a time varying discrete-
time map modeling the behavior of a power factor correction AC-DC boost converter. This
map is derived in closed-form and is able to faithfully reproduce the system behavior under
realistic conditions. In the chaotic regime the map exhibits a sequence of bifurcation similar to
a bandcount doubling cascade on the low frequency. However, the observed scenario appears
in some sense incomplete, with some gaps in the bifurcation diagram, whose appearance to
our knowledge has never been reported before. We show that these gaps are caused by high
frequency oscillations.
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1. Introduction

Power factor correction (PFC) circuits are power supplies that regulate an output voltage while
providing a near unity power factor (PF) in the sense that the input current is proportional to
the input voltage [1, 2]. Although, a variety of circuit topologies and control methods have been
developed for PFC applications, the boost converter working in continuous conduction mode is
commonly chosen for medium and high power (above several hundred W) applications because
of its low conduction losses and reduced electromagnetic interferences filtering requirements [2].

The output voltage of a boost PFC converter (the bus voltage) must be always higher than
the peak line voltage for an appropriate functioning of the system. For usual line input voltage
applications (85-265 V RMS), the bus voltage is usually fixed in the range 380-400 V DC, which
is achieved by an appropriate external voltage feedback compensating loop.

While the output voltage of an AC-DC PFC circuit is regulated to a desired DC value, its
input is a sinusoidal time varying signal. This leads the duty cycle to vary between one and a
minimum value. One of the most important tasks in the design of PFC power supplies is the
implementation of the inner control loop.

While the main design criterion of maintaining a near unity PF can be achieved, in average,
by using traditional control design techniques based on averaged modeling, it is well known
that stability of the fundamental periodic orbit can not be achieved for all parameter values.
Recently it has been shown both by numerical simulations and by experimental measurements
that boost PFC converter can exhibit period doubling cascades and sub-harmonic oscillations
at the line frequency as well as bubbling at the switching frequency [3, 4, 5]. This is a very
undesirable behavior as it can jeopardize considerably the system performances by increasing its
total harmonic distortion, as confirmed both experimentally and numerically (see for example
recent publications [6, 7]). Realizing the practical importance of PFC AC-DC converters, a
series of studies dealing with the nonlinear behavior in these systems have been carried out on
this topic [8, 9, 10, 11].

In fact, the occurrence of bifurcations in power electronics circuits was reported in the
pioneer works of Hamill and co-workers [12, 13] where the importance of studying the dynamical
behavior of these systems by using iterative mappings was pointed out. Among the earliest works
providing a detailed numerical and analytic investigation of bifurcations and transitions to chaos
in DC-DC converters it is worth mentioning the paper by Baushev and Zhusubaliyev [14]. In this
work it is shown that such systems can possess a wide range of parameters with many locally
stable limit cycles with different dynamic characteristics, including regions of multistability.
These cycles arise in hard transitions, and with changing parameters each of them can undergo
either a finite or an infinite sequence of period-doubling bifurcations, resulting in the transition
to chaos.

While in DC-DC converters, the map describing the dynamical behavior is time invariant
(autonomous) [12, 13, 14], in the case DC-AC converters [15] and AC-DC converters, the map
takes a time varying (non-autonomous) form [8, 16, 17]. The goal of the present paper is to
present a simple time-varying map modeling the behavior of an AC-DC PFC boost converter,
and to report an unusual bifurcation phenomenon which, to our knowledge, has never been
reported before.

The paper is organized as follows. First, in Secs. 2 and 3 we describe the considered circuit,
its model in continuous time and the discrete-time model resulting from it. Next, in Sec. 4
we show the examples of simulations in continuous and discrete time domains. Thereafter,
in Sec. 5 we discuss bifurcation structures formed by chaotic attractors in the considered
system. The bifurcation diagrams obtained under variation of one of the parameters appear
surprisingly incomplete. We show that this is not a problem related to numerical inaccuracy
but a phenomenon caused by high frequency oscillations.
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Figure 1. Boost PFC circuit designed to provide a regulated DC voltage Vo from the AC input
voltage vg while operating with a nearly uniform PF. The inductor current iL is detected by
means of a current sensor, and the error signal iref − iL is sampled at the switching frequency
and processed by the current controller. The outer voltage controller (dashed structure in the
figure) is not included in the model.

2. System description

Fig. 1 shows a schematic circuit diagram of a PFC boost converter designed to produce a
regulated DC voltage Vo from the AC voltage source vg while operating with a nearly uniform
power factor. As shown in the figure, the inductor current iL is measured by means of a current
sensor, and the error current, represented by the difference iref − iL, is sampled at the switching
frequency and thereafter processed in the sample-and-hold current controller. The output of
this controller ic is connected to the non-inverting input of the comperator and a suitable saw-
tooth signal ia is applied to the inverting input of the comperator. This is used to control the
operation of the switch S. This operation is arranged in such a way that the switch S switches
on at the beginning of each switching period cycle and switches off whenever the ramp voltage
ia exceeds the control signal ic. The diode D is activated in a manner complementary to the
activation of S. The capacitor with capacitance C and the resistor with resistance R represent a
smoothing filter that provides a smooth autonomous component to the dynamics of the system.

In order to regulate the output voltage vo to a desired value Vo an outer voltage control loop
is used (the structure shown dashed in Fig. 1). The crossover frequency of this controller must
be of the order of some Hz for the ripple associated with the voltage feedback to be small, and
the harmonic distortion of the line current acceptable.

During steady state operation, the converter is designed to operate with periodic wave forms
for the various state variables. The system is subjected to two external periodicities: the
switching period T and the line period Tl � T . To ensure that the average value of the
inductor current is in phase with the input voltage, the reference current iref is given by the
input voltage vg(t) multiplied by a suitable conductance g:

iref(t) = g vg(t). (1)

Here the conductance g is provided by the output of the external voltage controller. The signal

vg(t) = Vg| sin(ωt)| (2)
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is the rectified sinusoidal source voltage with the constant amplitude Vg and the angular
frequency ω = 2π/Tl. In practice, the value of g is the conductance given by an external
loop controller regulating the output voltage vo and which is related to the rated power of the
converter. However, in most applications this conductance as well as the output voltage can be
considered as constant (g = G and vo = Vo). Indeed, in practice the output voltage is regulated
to constant DC value by means of an appropriate controller. Since the small ripple in this output
voltage has no effect on the phenomena reported in this study, the ripple of this voltage and its
controller can be neglected. This approximation will also allow us to obtain the time varying
map in closed form. Therefore, in the following, to simplify the analysis we shall ignore the
outer loop. Hence, the inductor current represents the only state variable of our model.

Among many control algorithms that can be used for performing the PFC operation, in
this work we choose a simple control strategy in which the value of the duty cycle d(nT ) is
programmed digitally according the following law

d(nT ) = dn =
1

I`
(−iref(nT ) + iL(nT ) + I`) (3)

where I` as defined in Fig. 1 is the amplitude of the ramp signal. It should be noted that
because the duty cycle is defined cycle by cycle, its expression in (3) has a physical meaning
only in the interval (0, 1). If that expression gives values outside this interval, the duty cycle
will be saturated to 0 or 1.

The behavior of the considered converter is described by the differential equation

dx

dt
=


vg(t)

L
if δ(t) = 1

vg(t)

L
− Vo
L

if δ(t) = 0

(4)

where x = iL, while
vg(t)

L
and

Vo − vg(t)

L
are the time varying rising and falling slopes of the

inductor current within a switching cycle. In Eq. (4) δ(t) is the driving binary signal with the
duty cycle d(t) applied to the switch which is generated by T−periodic PWM process, Vo is the
output voltage.

3. Time varying map

Let us suppose that t is such that sin(ωt) > 0 and therefore | sin(ωt)| = sin(ωt). During the on
phase (δ(t) = 1), i.e., within the interval nT < t < tn, tn = (n+ dn)T , Eq. (4) has the form

dx

dt
=
Vg
L

sin(ωt), x(nT ) = xn, (5)

with the solution

x(t) = xn −
Vg
Lω

[cos(ωt)− cos(ωnT )] , (6)

or, at the switching time t = tn,

x(tn) = xn −
Vg
Lω

[cos(ωtn)− cos(ωnT )] . (7)

At the time t = tn, the converter switches to the phase off, and in the subsequent time interval
tn 6 t 6 (n+ 1)T , Eq. (4) takes the form

dx

dt
=
Vg
L

sin(ωt)− Vo
L
, (8)
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with the solution

x(t) = x(tn)− Vo
L

(t− tn)− Vg
Lω

[cos(ωt)− cos(ωtn)]. (9)

Hence, for t = (n+ 1)T we obtain

xn+1 = x(tn)− Vo
L

(1− dn)T − Vg
Lω

[cos(ω(n+ 1)T )− cos(ωtn)], (10)

with xn+1 = x((n+ 1)T ). Substituting the expression (7) into (10), we obtain the map for the
first half line cycle, i.e., for ωnT 6 π:

xn+1 = xn −
Vo
L

(1− dn)T − Vg
Lω

[
cos(ω(n+ 1)T )− cos(ωnT )

]
. (11)

For the remaining half cycle the calculations can be done similarly by inverting the sign of the
sine function. In this way we obtain

xn+1 =


xn −

Vo
L
znT −

Vg
Lω
· [cos(ω(n+ 1)T )− cos(ωnT )] if sin(ωnT ) > 0

xn −
Vo
L
znT +

Vg
Lω
· [cos(ω(n+ 1)T )− cos(ωnT )] if sin(ωnT ) < 0

(12a)

where

zn = 1− dn =


0 if xn < rn,

rn − xn
I`

if rn 6 xn 6 rn + I`,

1 if xn > rn + I`

(12b)

and rn = iref(nT ) = gVg sin(ωnT ).
Let the ratio between the line period and the switching period be m = Tl/T . In practice

the line period is much higher than the switching period and therefore m takes high values.
For instance, the set of frequency values used in this paper leads to m = 1000. Under these
conditions, Eq. (12a) can be rewritten as

xn+1 =


xn −

Vo
L
znT −

Vg
Lω

[
cos

(
2π
n+ 1

m

)
− cos

(
2π

n

m

)]
if sin

(
2π

n

m

)
> 0

xn −
Vo
L
znT +

Vg
Lω

[
cos

(
2π
n+ 1

m

)
− cos

(
2π

n

m

)]
if sin

(
2π

n

m

)
< 0

(13)

Eq. (13) defines a non-autonomous 1D map which can easily be transformed into an autonomous
2D map by extending the state space and considering the discrete time n as a new state variable.
As sine and cosine functions in Eq. (13) are m-periodic, this new variable can be considered
modulo m:

xn+1 =


xn −

Vo
L
znT −

Vg
Lω

[
cos

(
2π
kn + 1

m

)
− cos

(
2π
kn
m

)]
if sin

(
2π
kn
m

)
> 0

xn −
Vo
L
znT +

Vg
Lω

[
cos

(
2π
kn + 1

m

)
− cos

(
2π
kn
m

)]
if sin

(
2π
kn
m

)
< 0

(14a)

kn+1 = (kn + 1) mod m, k0 = 0 (14b)

Moreover, when m is an even number, the map (14a) can be further simplified by restricting
the variable k to the interval K = [0,m/2− 1]. Indeed, since ∀φ : cos(φ) = − cos(φ − π), the
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Figure 2. A typical shape of the function f . As one can see, for each fixed k the function f(x, k∗) as
a function of x is bimodal. One period of f(x, k) with respect to k is shown. Parameters: I` = 2.1A,
m = 1000.

expressions for sin(2πkn/m) > 0 and sin(2πkn/m) < 0 can be unified. This leads to the final
expression of our model

xn+1 = f(xn, kn) = xn +
Vg
Lω

cos

(
2π
kn
m

)
− Vg
Lω

cos

(
2π
kn + 1

m

)
− Vo
L
znT, (15a)

kn+1 = h(kn) = (kn + 1) mod
m

2
, k0 = 0 (15b)

where zn is given by Eq. (12b) and rn can be rewritten as follows:

rn = iref(kn) = gVg sin

(
2π
kn
m

)
. (15c)

Note the variable k corresponds to the discrete time restricted to the intervalK and takes integer
values

kn = n mod
m

2
. (16)

After extending the state space by considering the discrete time kn as a new state variable,
the model in (15) represents an autonomous triangular map where f in Eq.(15a) depends both
on x and k, while h in Eq.(15b) depends on k only. Because of the possible saturation of the
duty cycle (see Eq.(12b)), the phase space R+ × K of map (15) consists of three partitions
separated by the following two borders

s− = {(x, k) | x = rk} (17a)

s+ = {(x, k) | x = rk + I`} . (17b)

On the outer partitions the function f is linear and increasing with respect to x, while on the
middle partition it is non-linear and decreasing, so that for each fixed k, f as a function of x
is bimodal, as illustrated in Fig. 2. It is worth noticing that this kind of maps results from the
modeling of several other classes of power-converters (see [17] for an example).

4. Numerical simulations

Let us fix the following set of parameter values, determined by physical parameters of the
considered circuit: g = 0.01 S, Vg = 220

√
2 V, ω = 2π · 50 rad/s, Vo = 380 V, L = 150 µH,
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(a) (b)

(c) (d)

Figure 3. (a) A stable cycle and (b) a two-band chaotic attractor of map (15). Additionally, in (a) and
(b) the boundaries s± are shown. In (c) and (d) the time-series obtained in continuous-time simulations
at the same parameter values as in (a) and (b) are shown, dots indicate the values obtained by sampling
the time series with the switching frequency. Parameters: (a), (c): I` = 2.54A, (b), (d): I` = 2.1A.

T = 2 µs, and explore the possible dynamical behaviors that the system exhibits under variation
of the parameter I` (recall that this parameter determines the amplitude of the ramp function).
Fig. 3 shows the system behavior in the state space (kn, xn) for two different values of I`. In
Fig. 3(a) an example for periodic dynamics of map (15) is presented, corresponding to the desired
operational regime of the circuit. In this case the controller is able to impose a near unity PF
for the system since, in average, the inductor current is proportional to the rectified sinusoidal
input voltage without any irregular oscillation. However, this is not the case for Fig. 3(b) which
shows a chaotic attractor of map (15).

For comparison, the system is also simulated using a circuit-based continuous-time switched
model implemented in PSIM [18]. The resulting wave forms are shown in Fig. 3(c)-(d). As one
can see, the results of continuous-time and discrete-time simulations are in a good agreement.
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5. Chaotic attractors

As inspection of the figure shows, the chaotic attractor in Fig. 4(a) is located inside the absorbing
area confined by the curves defined by the images of the borders:

c0,± =
{

(x, k) | x = f
(
k(−1), s±

k(−1)

)}
(18a)

c1,± =
{

(x, k) | x = f
(
k(−1), f

(
k(−2), s±

k(−2)

))}
(18b)

where

k(i) = (k + i) mod m/2 (18c)

One immediately observes that for each fixed k = k̃ the attractor consists of two bands, which
are mapped by f on the corresponding two bands at the next value k = k̃(1). It is worth noticing
that the size and the oscillations of the bands depends strongly on k. For example, for k close
to m/4 the bands are broad and do not oscillate. By contrast, there are two intervals for k close
to m/8 and 3m/8 in which the bands suddenly decrease in size and high frequency oscillations
appear.

The high frequency oscillations mentioned above lead to phenomena which may be misleading
on the large scale. For example, for k > 120 the chaotic attractor shown in Fig. 4(b) seems to
consist of four bands. However, it is clearly visible in the magnification that for each value of
k the attractor has only one band, i.e., it is a one-band attractor. Remarkably, with increasing
k the bands are cyclically rotating taking one of four possible positions, which leads to the
large-scale structure misleadingly resembling a four-band attractor.

Numerical simulations suggest that by decreasing the parameter I` we observe a sequence
of bifurcations forming a cascade which is similar to a bandcount doubling cascade well known
for piecewise smooth 1D maps [19]. Recall that in continuous maps such a cascade is formed
by merging bifurcations [20] and shows a sequence of chaotic attractors with K = p · 2i bands,
i = 0, 1, 2, . . . , accumulating to a parameter value at which a p-cycle changes its stability [19]. In
the 2D map (15), a similar scenario can be observed under variation of I`, and also the Lyapunov
exponents (see Fig. 5(d)) show the structure typical for such transitions to chaos. Note that in
order to avoid difficulties related to the discrete-valued variable k, the Lyapunov exponents are
calculated not for the map (15), but for the (m/2)th iterate fm/2 of its first component f (see
Eq. (15a)). It can easily be shown that fm/2 represents a 1D stroboscopic map of map (15) and
reflects its dynamics completely.

In addition, an unusual phenomenon can be observed in Fig. 5, namely that the bifurcations
diagrams calculated at different fixed values of k appear incomplete and exhibit remarkable
gaps. The location of these gaps depends on k and at the present, the observed phenomenon is
far from being completely investigated. It can already be said that it results from two different
mechanisms:

(i) As usual for bandcount doubling cascades in 1D maps, there are nested absorbing areas in
the state space, and the number of their connected components determines the position in the
bandcount doubling cascade. For example, at the parameter value corresponding to Fig. 4(a)
there exists an overall absorbing area with one connected component confined by the first two
images of the borders (ci,±, i = 0, 1; as described above). Inside this absorbing area there exists
a nested absorbing area with two connected components, confined by the first four images of
the borders (ci,±; i = 0, 1, 2, 3). This phenomenon is independent on k and explains the overall
shape of the observed bifurcation diagrams.

(ii) In addition to the described phenomenon, there are oscillations whose appearance depends
on k. As a consequence, at some values of k the bands of chaotic attractors fill the connected
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(a)

(b)

Figure 4. Chaotic attractors of map (15): (a) a two-band attractor; (b) a one-band attractor.
Additionally, the borders s± and their images of rank 1 and 2 are shown. The values k = 250, 251,
252 corresponding to the bifurcation diagrams shown in Fig. 5(a), (b) and (c), respectively, are marked
in the magnifications. Parameters: (a) I` = 2.1A, (b) I` = 2.32A. In Fig. 5 these parameter values are
marked with B and C, respectively
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(a) (b)

(c) (d)

Figure 5. Bifurcation diagrams obtained under variation of I` at (a) k = 250, (b) k = 251 and (c)
k = 252. The attractor at the parameter value marked with A is shown in Fig. 3(a), at the value marked
with B in Figs. 3(b) and 4(a), and at the value marked with C in Fig. 4(b). In (d) the Lyapunov exponent
Λ is shown, calculated using the (m/2)th iterate fm/2.

components of the absorbing areas mentioned above, while at the others they do not. This
can be observed for example in the magnifications of the attractor shown in Fig. 4(a). In the
right magnification (which shows the interval 245 6 k 6 265) the boundaries of the chaotic
attractor are given by the first four images ci,+; i = 0, 1, 2, 3 of the border. By contrast, in
the left magnification (showing the interval 85 6 k 6 130) the first four images of the borders
are not sufficient to describe the boundaries. Similarly, for each k the band of the one-band
attractor shown in Fig. 4(b) fills one of four intervals. All together, these four intervals fit to the
bandcount doubling structure mentioned above. However, as at each fixed k only one of them is
filled, causing the resulting bifurcation diagram calculated at this particular value of k to appear
incomplete. For example, at k = 250 (this value is labeled in the magnification in Fig. 4(b)) the
second interval from below is filled, so that only this band is present in the bifurcation diagram
calculated at this value of k (see Fig. 5(a) and the parameter value labeled by the letter C). For
the next values of k, i.e., for k = 251 and k = 252, the third and the first intervals from below
are filled, respectively. This explains the differences between Figs. 5(a), 5(b) and 5(c).

The mechanism described above explains the appearance of gaps on the bifurcation diagrams
shown Fig. 5 and shows that they are not related to numerical inaccuracies. As a next step,
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remaining for a future work, it is necessary to investigate the bifurcations leading the number
of bands to change and to find the regularities in their occurrence.

6. Conclusions

Over the last couple of decades, active PFC circuits have become common in power supply
systems in a broad range of applications such as telecommunications, computing equipment and
micro-grids among others. The advantage of using active circuits is the higher efficiency and
the better power quality than in passive circuits. The penalty is the added complexity that
results from using switching devices working in nonlinear regime. This may cause the basic
periodic operating modes to disappear through nonsmooth bifurcation phenomena, and may
also introduce new oscillatory regimes in the system, leading to poor performances in terms of
the power quality. In this paper an investigation of the dynamics of an AC-DC boost converter
working as a PFC circuit was performed by using a nonlinear piecewise smooth time varying
map. The results obtained from this map were validated by a circuit-based switched model.
Nonsmooth bubbling phenomena have been observed. Numerical simulations show that when
some parameter values change a sequence of bifurcations forming a cascade which is similar
to a bandcount doubling cascade is observed. However, in the considered case the bifurcation
scenario is more complicated, as it results from a mixture of time-independent appearance
and disappearance of nested absorbing areas on one side and time-dependent bubbling-related
phenomena. To our knowledge similar effects have never been reported before.
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