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Abstract. Numerical studies of the Hénon map show that there is an abundance of periodic windows close
to classical parameter values. In this work properties of these periodic windows are studied. It is shown that
in order to detect periodic windows in simulations one has to compute trajectories in a sufficient precision,
which in many cases is much higher than the standard double precision. Moreover, it is shown that even if
computations are carried out in a sufficient precision, one may need an extremely large number of iterations
to observe convergence to a sink starting from random initial conditions, and hence the underlying steady
state behavior may be practically undetectable using the standard trajectory monitoring based approach.

1. Introduction

Numerical simulations play an important role in studying dynamics of nonlinear systems. Simulations
are used to compute long trajectories to study steady-state behaviour, to provide data for bifurcation
diagrams, to compute Lyapunov exponents to classify attractors, etc. However, due to inherent properties
of digital computers, results found by numerical simulations are almost never exact [1, 2]. Nevertheless,
computer generated solutions are often accepted as true solutions.

In this work, we will show examples that simulation studies of nonlinear systems as simple as the
Hénon map cannot, in general, provide conclusive answer to the question what is the true nature of the
attractor existing for fixed parameter values. It follows that what we observe in many examples reported
in the literature, and what is claimed to be a chaotic trajectory, might in fact be a transient to a periodic
steady-state or an artifact caused by rounding errors.

2. Detection of periodic windows for the Hénon map
The Hénon map [3] is a two-parameter, invertible map of a plane into itself

h(x,y) = (1 +y —ax?, bx), )

displaying a wide array of dynamical behaviors as its parameters are varied. In [3], the map £ is
numerically studied with parameter values (a, b) = (1.4,0.3), referred to in the following as the classical
parameter values, and it is claimed that ”depending on the initial point, the sequence of points obtained
by iteration of the mapping either diverges to infinity or tends to a strange attractor”. For the classical
parameter values the so-called Hénon attractor is observed in simulations.

Fig. 1(a) shows a bifurcation diagram for the Hénon map. The value of b is fixed (b = 0.3) and 10000
values of a in the range a € [0, 1.42] are selected. For each parameter value 10000 iterates are skipped
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and the x variable for the next 50000 iterates is plotted. Period-doubling route to chaos and low-period
windows in the chaotic range are clearly visible.
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Figure 1. Bifurcation diagram for the Hénon map, x € [-1.5,1.5] versus a; b = 0.3, (a) 10000
parameter values a € [0, 1.42], 10000 iterates skipped, 50000 iterates plotted, (b) 10000 parameter
values a € [1.39, 1.41], 100000 iterates skipped, 50000 iterates plotted, x € [1.0, 1.3].

A bifurcation diagram for a smaller interval a € [1.39, 1.41] is shown in Fig. 1(b). The number of
skipped iteration has been increased to 100000. One can see a single wide periodic window and a few
narrower ones (not clearly visible). Important questions are how many periodic windows can be detected
using selected grid of parameter values, and whether the number of skipped iterations in a given periodic
window is sufficient to converge to the corresponding sink. In the remaining part of the paper we will
discuss these problems in detail.

The most natural way to find periodic windows is to using the monitoring trajectory based approach.
In this method, a number of iterates are computed in the hope that a trajectory reaches a steady-
state. Next, we take the current iterate as the new initial point and check if the trajectory periodically
returns very close to this point. This method has been used in [4] to find periodic windows in a small
neighborhood of the classical parameter values. In an example search test 10® points in the parameter
space filling uniformly the interval [1.3999, 1.4001] x 0.3 have been considered. For each point 1000
random initial conditions have been selected and for each initial condition 107 iterations have been
computed to detect stable periodic orbits. Note that the total number of iterations needed to carry out
such a test is 10!7. In spite of very long computation time, only 461 periodic windows intersecting the
region Qp = [1.3999, 1.4001] x [0.2999, 0.3001] have been found. This failure is caused by a number
of factors. First, detection of periodic windows may require arithmetic precision higher than standard
double-precision. Second, periodic windows may be too narrow to be detected with a chosen sampling
of the parameter space. Third, the number of iterations to observe the convergence may be very large.

A more systematic approach to detect periodic windows has been proposed in [5]. It is based
on finding a carefully selected set of periodic orbits existing for fixed parameter values, and then
using continuation in the parameter space to find parameter values sustaining a sink. In this method,
two close points in the parameter space are selected and for each of them the existence of periodic
orbits corresponding to specific symbol sequences is verified using the Biham-Wenzel method [6].
Symbol sequences admissible for only one of the two considered points correspond to periodic windows
intersecting the interval defined by these points. Positions of periodic windows are found using the
continuation technique. We start at the endpoint where the orbit exist, modify parameter values moving
towards the second endpoint where the orbit is not admissible. When moving along the interval in the
parameter space, the position of the orbit is updated, eigenvalues of the corresponding Jacobian matrix
are calculated, and stability conditions are verified. When a point in parameter space with a stable
periodic behavior is found, the calculations are stopped with a candidate of a point belonging to the
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periodic window. The existence of a stable periodic orbit is verified using the interval Newton method.
For more details see [5]. Selection of symbol sequences to be considered for a given sequence length
is based on results obtained for the lower-period windows. This step is necessary since considering all
symbol sequences for larger periods is not feasible.

Using this method, many (tens of thousands) low-period windows very close to (1.4,0.3) have been
found. These include several periodic windows within the distance 1072° from the classical parameter
values. The closest one is the period-115 window at the distance less than 7 x 10722 from the point
(1.4,0.3).

3. Convergence properties

In this section, we study properties of periodic windows intersecting a small neighborhood of the classical
parameter values (a,b) = (1.4,0.3). Computation are carried out in the double-precision arithmetic or
in multiple-precision arithmetic using the MPFR library [7]. Interface to multiple-precision interval
arithmetic calculations is provided by the CAPD library [8].

Fig. 2 shows a trajectory of the Hénon map with parameters a = 1.400000009849371 and b =
0.300000019143266 for the initial point (xg,y9) = (0,0) computed in the standard double precision
arithmetic. 4 x 10'! iterations are skipped in the hope that the steady-state has been reached, and the next
10000 points are plotted using red dots. One can see that the plot is visually indistinguishable from the
well-known Hénon attractor. However, if we wait longer the trajectory converges to the period-31 stable
periodic orbit plotted as blue circles in Fig. 2.
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The parameter values considered belong to one of the periodic windows detected using the symbolic
dynamics based approach [5]. The existence of the stable periodic orbit has been rigorously confirmed
using the interval Newton method [9, 10]. Therefore, we can be sure that the observed periodic behaviour
is not a rounding error artifact. We have tested various initial conditions and confirmed in simulations
that all trajectories converge to the same period-31 sink, which indicates that this sink is perhaps the
only attractor existing for the considered parameter values. This example shows that finite pieces of
trajectories, even if they are very long, are inconclusive as to the true nature of the steady-state of the
system. It follows that we need to be very cautious drawing any conclusions from study of such finite
trajectories. For example from the fact that the largest Lyapunov exponent computed along a transient
trajectory is positive it does not follow that the steady state is chaotic. In the example considered, the
maximum Lyapunov exponent becomes negative only after the steady-state is reached.

Let us assume that the considered parameter values (a, b) belong to a periodic window, i.e. there exist
a stable periodic orbit for these parameter values. One can show that sufficiently close to the classical
parameter values the Hénon map has infinitely many periodic orbits. This follows from the existence of
nontrivial symbolic dynamics with positive topological entropy [11]. Most of these orbits are unstable.
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It follows that even if parameter values belong to a periodic window and the sink is the only attractor
for the system, it may take an arbitrarily large number of iterations to observe convergence to this sink.
Given the iteration number n and any of the unstable periodic orbits one may choose an initial point
sufficiently close to this unstable orbit so that only after more than n iterations a trajectory leaves a
small neighborhood of the unstable periodic orbit and then it may converge to the sink. An interesting
property of stable periodic orbits is the average convergence time starting from random initial conditions.
If the average convergence time is large then we have little chance of finding the sink observing short
trajectories. Let n¢ony(0) denote the number of iterations which are required to converge to the sink with
probability o € (0, 1) starting from random initial conditions. To approximate n.ony(0), we first compute
trajectories for N random initial points and record the corresponding convergence times ny, n, ..., ny.
Next, we sort the convergence times n; < ny < --- < ny and find k such that k£ ~ oN. n; serves as an
approximation of ngny(0). In the following, we will use o = 0.5.

Later, it will be shown that it is difficult to get a reliable approximation of .o,y for parameter values
close to the classical case. To investigate convergence properties we will use the notion of the immediate
basin of attraction and its radius [4]. Let A = (zo,z1,...,2p—1) be a periodic attractor. We say that a point
z belongs to the immediate basin of attraction B.(A) of the attractor A if its trajectory converges to the
attractor and does not escape further than £ from it, i.e.

B.(A) = {z: l(h"(z) = K" (zx)|l < € Yn > 0 and nh_)n;lo l(A"(z) = A" (zx)|l = O for some 0 < k < p}. )

We will use € to be 1% of the diameter of the smallest ball enclosing the attractor. The condition
z € Bg(A) can be verified numerically by computing the trajectory of z in arithmetic of sufficient
precision and verifying whether conditions in (2) hold. Computing accurately the measure u(B.(A))
of the immediate basin of attraction requires very fine sampling of the state space and is computationally
expensive. It is easier to find connected components of B.(A), each containing one of the points z;. In
this way, the search is limited to grid points in the state space which are connected to points already
identified as belonging to B.(A). To further reduce the computation time needed to find a lower bound
of u(B:(A)) we will use the notion of the immediate basin radius of the attractor A at the point z; which
is defined as

te(zx) = supf{r: llz—zxll < r = z€ B.(A)}. 3)

Computation of rg(zx) is straightforward. For example, the bisection method can be used to obtain an
accurate approximation of the largest r such that the condition z € B.(A) is satisfied for test points in a
ball of radius r centered at z.

The minimum immediate basin radius of the attractor A is defined as

1:(A) = Olgkigp 15(2k)- )

If the minimum immediate basin radius of a sink is smaller than the arithmetic precision used then
trajectories will most likely escape from the sink even if computations are started at a stable periodic
point; in general we will not be able to observe the sink in simulations (compare [1]). Provided that
the computations are carried out in a sufficient precision, a trajectory initiated at a point closer to the
sink than its immediate basin radius converges to the sink without leaving its small neighborhood; in
simulations we will see a stable periodic behavior.

To illustrate the above definitions let us consider the point (a,b) = (1.4028,0.3) in the parameter
space. This point belongs to a period-9 window. Position of one of the stable periodic points existing for
(a,b) = (1.4028,0.3) is shown in Fig. 3 using the star symbol. The border of the connected component
containing this point of the immediate basin of attraction of the periodic orbit is plotted in green. The
immediate basin radius at this point is plotted as a red circle. Chaotic transient trajectories are plotted as
blue dots.
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Convergence properties depend on the measure of the intersection of a chaotic set with the immediate
basin. We will show that the measure of the immediate basin and the minimum immediate basin radius
can be used to estimate the average time needed for a trajectory to converge to the sink. Let us first
consider the case b = 0. When b = 0, the Hénon map reduces to h(x) = 1 — ax?, which after a
linear change of variable is equivalent to the logistic map f(x) = ax(1 — x) (with different a). Let us
first study convergence properties for a selected periodic window. For the logistic map each periodic
window corresponds to a symbol sequence s = (so, 51, ..., 5p-1), With s; € {~1, +1}, where the number
of positive symbols is odd. In [12], it has been shown how to efficiently find the position of a periodic
window for a given symbol sequence using the Newton method applied to find bifurcation points.
Applying this procedure to the symbol sequence s = (———+—-—+——+) gives the window’s endpoints
(a,a) =~ (3.96776003545,3.96776027772). Stability of the periodic orbit (xg, x1,...,x,-1) depends
on the value of 1 = (f?) (xo) = f'(xp=1)--- f'(x1)f"(x0). If |[A] < 1 then the orbit is asymptotically
stable. Fig. 4(a) shows A versus a for the periodic window considered. The left and the right endpoints
correspond to saddle-node and period-doubling bifurcation points with A = 1 and A = —1, respectively.

A
”
0.57
0,
-0.5¢ Figure 4. The derivative 1 = (f?) (xp)
across the periodic window of the logistic map
’ ‘ ‘ a corresponding to the symbol sequence s =
3.96776 3.9677601 3.9677602 3.9677603 (———+——+—+).

For the logistic map the state space is one-dimensional and for a given stable periodic orbit
(x0, X1, ..., x,-1) itis relatively easy to find p connected components of the immediate basin of attraction
of the sink containing points x;. Let us denote by L the total length of these connected components. The
total length L versus the parameter a across the selected periodic window is shown in Fig. 5(a). One
can see that when the parameter approaches the saddle-node bifurcation point the total length L goes to
zero. This is a consequence of the fact that at the saddle-node point the immediate basin of attraction
disappears. Somewhat unexpected is the monotonicity of L across the window. The maximum is
observed at the right window’s endpoint where the period-doubling bifurcation occurs. One could expect
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Figure 5. Convergence properties in the periodic window of the logistic map corresponding to the

symbol sequence s = (———+——+——+), (a) measure of subset of B.(A) composed of connected
components containing points xi, (b) average number of iterations 7¢ony(0.5) to converge to the sink.

that when A is small in magnitude, then the immediate basin of attraction should be large. However, this
is not true. The total length L for superstable orbit (with 4 = 0) is smaller than for larger @ when A is
nonzero. Average convergence times across the periodic window are shown in Fig. 5(b). These results
have been obtained by selecting 100 equidistant parameter values belonging to the periodic window. For
each parameter value 10000 trajectories starting from random initial conditions have been computed,
convergence time was recorded, and the average convergence time has been found. Generally, the
average convergence time decreases when a increases. It escapes to infinity when parameter approaches
the saddle-node bifurcation point (left window’s endpoint).

Note that there is a strong correlation between L and n.on, (compare Fig. 5(a) and (b)). Below, we
derive an approximate formula for the relation between L and n.o,y. We will assume that for parameter
values considered there exist a single periodic attractor (for the logistic map it is known that there exists
at most one attractor), and that transient trajectories visit the invariant set ‘A containing all periodic orbits
according to the uniform distribution. The true distribution is not flat, but we will see that anyway the
resulting formula produces acceptable results. Let us assume that the measure of A is D. The probability
that at least one out of n points selected randomly from the set of measure D belongs to a subset of
measure L is 0 = 1 — (1 — L/D)". Solving for n with the assumption L < D yields

log(1-9) Dlog(l1-p)™!
n = =~ .

= ~ 5
log(1 - £) L ©)
When a is close to 4 the measure of the set A is close to one. Assuming that o = 0.5 yields
n~0.693-L7". (6)

Thus, we can expect that the average number n.qpny Of iterations to converge to a sink whose immediate
basin has measure L is inversely proportional to L. To verify this relationship, in Fig. 6 we plot ncony
versus L for eleven windows of the logistic map with periods p € [9,26]. The corresponding window
width are in the range [10713,107°]. One can see that the plot is composed of short intervals. Each
interval corresponds to parameter values belonging to one of the periodic windows considered. For
smaller L the plot is more noisy. This is related to the fact that for small window width (close to 10719)
the minimum immediate basin radius of the periodic attractor is also very small. In consequence, the
effects caused by finite precision of the double precision arithmetic become visible. Data points in Fig. 6
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lie close to a straight line
log ncony = c1 log L + co, 7

with ¢; = —0.982, ¢p = 0.7642, which is plotted in Fig. 6 in green. One can see that c; is close to
—1, which confirms the approximate formula (6). We may use (7) to extrapolate what is the average
convergence time ngoqy for very small L when direct computation of no,y is not feasible. For example
when L = 1073 we expect that the average convergence time is around 6 x 10%°. Using one of the
fastest computers available nowadays with the performance close to 50 petaflops (5 x 10! floating point
operations per second) with the assumption that three floating point operations are needed to compute
one iteration of the logistic map, one would need on average more than one million years of computations
to see the convergence.
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Let us now consider periodic windows of the Hénon map close to classical parameter values. Fig. 7(a)
shows the relationship between the minimum immediate basin radius r, and the precision (in bits) needed
to see the sink in simulations. This number is computed as the minimum number of bits of multi-
precision arithmetic used such that the computer generated trajectory initiated exactly (with the given
precision) at the sink position does not escape from a small neighborhood of the sink. One can see that
the plot is close to the line: —log, . plotted in Fig. 7(a) as a red solid line. This phenomenon can be
easily explained in the following way. If the arithmetic precision does not allow us to represent points
belonging to a neighborhood of a periodic point with the radius r, then most likely a trajectory of a
periodic point represented in this precision will escape from this little neighborhood.

To study convergence properties, in Fig. 7(b) we plot the relationship between the minimum
immediate basin radius r, and average number 7oy, Of iterations to converge to a sink with probability
o = 0.5. This data was based on computing trajectories starting at 10000 randomly chosen initial
conditions for several periodic windows intersecting the interval (a, b) € [1.39, 1.41] % {0.3}. For small r.
the number of initial points was decreased due to very long computation times. Fitting data points shown
in Fig. 7(b) to the model

log neony = 1 logre + co. (8

gives ¢ = —0.7589, ¢y = 0.0566. This model is plotted in Fig. 7(b) as a green line. Note that c; is
significantly smaller than 1 in absolute value in opposite to the logistic map case (compare (7)). This
is related to the fact that the chaotic set for the Hénon map is not one-dimensional, but has a complex
fractal structure. The results obtained indicate that we may use formula (8) to extrapolate the average
return time for periodic orbits with very small minimum immediate basin radius.
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Figure 7. Properties of periodic windows of the Hénon map close to classical parameter values;
(a) precision needed to observe the sink versus the minimum immediate basin radius r., (b) The average
number ngqyy Of iterations needed to observe convergence versus re.

Let us now apply the results presented above to an example periodic window. Let us consider the
closest periodic window reported in [5] with the distance from the point (1.4, 0.3) smaller than 7 x 10722
and the period equal to 115. Computer arithmetic precision necessary to detect this sink is 170 bits. We
verified that if the computations are carried out in lower precision then the trajectory escapes from the
sink even if it is started exactly (with the precision used) at the sink position. The minimum immediate
basin radius for this sink is r, ~ 3.72 x 1071, Using formula (8) we obtain ngony = 2 X 1038, We
expect that so many iterations are needed to observe with probability o = 0.5 the convergence to the
corresponding periodic orbit starting from random initial conditions. Assuming that 10'3 iterations can
be computed in one second (which is far beyond capabilities of even fastest supercomputers) one would
need more than 10'6 years to reach n¢ony = 2x 1038, Since it is impractical to compute so many iterations,
we conclude that this and similar periodic windows are practically undetectable using simulation based
approach even if computations are carried out with the required precision.

4. Conclusions

We have shown that in order to detect in simulation periodic windows lying very close to classical
parameter values of the Hénon map one has to use arithmetic precision with a sufficient number of
bits, which is usually much larger than the standard 53 bits precision. It follows that the true nature
of the corresponding attractors cannot be verified using standard double-precision computations. We
have estimated the average number of iterations needed to converge to corresponding sinks starting from
random initial conditions. We have shown that this number can be so large (above 10°%) even for sinks of
moderate length (with period 100 or so) that these sinks are practically undetectable in simulations even
if computations are carried out with the required precision. Although in our study we restricted ourselves
to the case of a simple two-dimensional map we believe that the results carry over to many other discrete
and continuous dynamical systems.

We conclude with the statement that most of the simulation based results concerning chaotic
behaviour of nonlinear systems published in the literature are irrelevant to the question what is the true
character of the underlying attractor — no conclusions in this matter can be obtained by studying finite
pieces of trajectories.
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