
Coherence in laser-induced Compton scattering
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Abstract. The concept of the electron mass dressing by a powerful laser pulse is discussed. It
is shown, by considering the coherent frequency combs generated out of the Compton radiation,
how the electron dressed mass can be determined experimentally. This also opens a possibility
to measure properties of extremely intense pulses for which the previously developed methods,
working at moderate intensities, are not applicable. Namely, one can determine these properties
from the properties of coherent Compton radiation.

1. Motivation

The concept of the electron mass dressing by a laser field is almost as old as the laser itself. It was
V. I. Ritus, A. I. Nikishov and their collaborators (see, e.g., [1, 2, 3] and references therein) who
thoroughly investigated the importance of this concept by considering fundamental processes of
quantum electrodynamics (QED), modified or induced by an action of intense electromagnetic
plane wave (for recent reviews see, e.g., Refs. [4, 5, 6, 7, 8]). The prominent example of such a
process is the Compton scattering in which an electron, interacting with a laser field, emits a
nonlaser photon. Its classical analogue is the so-called Thomson scattering in which an electron,
accelerated or decelerated while interacting with a laser field, emits an electromagnetic radiation.

If an electron interacts with a monochromatic electromagnetic plane wave of the frequency
ωL and of the time-averaged intensity I, the energy spectrum of Compton photons is defined by
the so-called Klein-Nishina formula [9, 10],

ωK,N =
NωL

pi·nK

pi·n
+ U

c
n·nK

pi·n
+ NωL

ωcut

, (1)

with positive integers N . In this formula, the symbol a · b means the relativistic scalar product
of four-vectors, a · b = a0b0 − a · b, with the four-vector a = (a0,a) and similarly for b, where
a ·b is the three-dimensional scalar product. Here, it is assumed that the plane wave propagates
in the space direction n, meaning that n = (1,n) and n ·n = 0. Similarly, the Compton photon
is generated in the direction nK [nK = (1,nK) and nK · nK = 0] with the four-momentum
KN = (ωK,N/c)nK , and pi = (p0i ,pi) is the electron initial momentum on the free-electron mass
shell, pi · pi = (mec)

2. The so-called ponderomotive energy of electrons in the laser field equals

U =
1

4
µ2

(mec
2)2

cpi · n
. (2)
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Here,

µ =
|e|E0
mecωL

, (3)

where the electric field amplitude of the plane wave, E0, is related to the time-averaged intensity
of the laser field such that (ε0 means the vacuum permittivity)

I =
1

2
ε0cE

2
0 . (4)

Moreover,

ωcut =
c

~

pi · n

n · nK
(5)

defines the maximum value of ωK,N (i.e., ωK,N → ωcut when N → ∞), and it represents the
only parameter that contains the Planck constant ~. Note that, in the limit ~ → 0, we recover
the classical Thomson formula for frequencies of generated radiation,

ωTh
K,N =

NωL
pi·nK

pi·n
+ U

c
n·nK

pi·n

, (6)

which are not limited from above as, in the classical limit, ωcut → ∞. Hence, one can find the
scaling law,

ωTh
K,N =

ωK,N

1−
ωK,N

ωcut

, (7)

which relates the Compton and Thomson frequencies. The consequences of this scaling law for
the plane waves and long laser pulses have been studied in [11, 12, 13], whereas its extension to
arbitrary short laser pulses with the discussion of the electron spin and laser pulse polarization
effects has been investigated in [14]. In our further analysis we use units in which ~ = 1.

It follows from the Klein-Nishina formula [Eq. (1)] that, for a given kinematics of the Compton
scattering, the measurement of positions of two consecutive peaks in the Compton spectrum,
ωK,N and ωK,N+1, allows one to determine the ponderomotive energy U . Indeed, after some
algebra, we arrive to the expression,

pi · nK
pi · n

+
U

c

n · nK
pi · n

=
ωL

ωK,N+1 − ωK,N

(

1−
ωK,N+1

ωcut

)(

1−
ωK,N

ωcut

)

. (8)

Note that the right-hand-side of this expression has to be independent of N . This means that the
proposed procedure of measuring U does not require the knowledge of the order of the Compton
frequency, N , but only positions of arbitrary chosen two adjacent peaks. In general, one could
select peaks in the spectrum corresponding to frequencies ωK,N and ωK,N+M , M = 1, 2, . . .,
and arrive at the similar conclusion.

In order to relate the ponderomotive energy U to the electron mass dressing let us recall
that the Volkov solution of the Dirac equation [15] for an electron with the four-momentum
p = (p0,p), p · p = m2

ec
2, is

ψ
(+)
pλ (x) =

√

mec2

V Ep

[

1−
e

2k · p
/A(k · x)/k

]

u
(+)
pλ e−iS

(+)
p (x), (9)

where

S(+)
p (x) = p · x+

∫ k·x

0

[

e
A(φ) · p

k · p
− e2

A2(φ)

2k · p

]

dφ, (10)
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Ep = cp0, and u
(+)
pλ is the free-electron bispinor normalized such that ū

(+)
pλ u

(+)
pλ′ = δλλ′ , with

λ = ± labeling its spin degrees of freedom. Moreover, for the linearly polarized plane wave, the
vector potential has the form,

A(φ) = ε
E0
ωL

cosφ, (11)

where ε is the polarization four-vector such that ε = (0, ε) and ε · ε = −ε · ε = −1. Note also

that k = (ωL/c)(1,n), with the unit vector n defined above. Hence, the function S
(+)
p (x) can

be splitted into two parts
S(+)
p (x) = p̄ · x+Gp(k · x), (12)

where Gp(φ) is a periodic function of φ with the period of 2π, whereas

p̄ = p+
1

4
(µmec)

2 k

p · k
(13)

is the so-called electron dressed momentum by the laser field. One can easily verify that

p̄ · p̄ = (m̄ec)
2, m̄e = me

√

1 +
1

2
µ2. (14)

This means that the electron momentum in the laser field is on the mass shell with the dressed
mass m̄e. By determining the ponderomotive energy U and, hence, the parameter µ [see, Eq. (2)],
the electron dressed mass [Eq. (14)] can be directly determined from the Compton spectrum.

The procedure described above allows one to determine the electron mass dressing in the
presence of a monochromatic plane wave or, after some modifications, in the presence of
polychromatic plane waves with commensurate frequencies. In real experiments, however, one
deals with finite-in-time and focused-in-space laser pulses. The requirement of space focusing
can be soften by considering the head-on collision of the laser pulse with relativistic electrons.
Under such conditions, in the electron reference frame, the laser focus is largely oblate. Thus,
the laser pulse can be modeled as a plane-wave-fronted pulse, which is finite in its propagation
direction but it is infinite in the perpendicular directions [16]. For such laser pulses the following
questions arise:

(i) Is it still meaningful to consider the electron mass dressing by an arbitrary short laser pulse?

(ii) If yes, can we measure the electron dressed mass for an arbitrary chosen laser pulse?

The purpose of our paper is to answer these two questions.

2. Momentum dressing by short laser pulses

Assume that the laser pulse lasts from t = 0 up to t = Tp and vanishes beyond this time
interval. Note that its time duration defines the fundamental frequency, ω = 2π/Tp, which is
the smallest frequency in the spectral decomposition of the pulse. If k = (ω/c)(1,n), then the
electromagnetic vector potential has the form,

A(φ) = A0(ε1f1(φ) + ε2f2(φ)), A0 =
E0
ω
, (15)

where φ = k · x. Moreover, εj = (0, εj) for j = 1, 2 denote two linear polarizations of the laser
field such that εj′ · εj = −δj′j and k · εj = 0. The two functions fj(φ), j = 1, 2, which we call
the shape functions, are arbitrary and sufficiently smooth functions that vanish for φ < 0 and
φ > 2π. We also define their mean values as

〈fmj 〉 =
1

2π

∫ 2π

0
dφ [fj(φ)]

m, j,m = 1, 2. (16)
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With these definitions, the function S
(+)
p (x) [Eq. (10)], can be decomposed as in (12). This time,

however, the electron dressed momentum becomes

p̄ = p− µmec
(p · ε1
p · k

〈f1〉+
p · ε2
p · k

〈f2〉
)

k +
1

2
(µmec)

2 〈f
2
1 〉+ 〈f22 〉

p · k
k. (17)

Is it the most general form of the momentum dressing? The answer to this question depends on
the QED process under considerations. As it follows from the analysis presented in [17], for the
Compton scattering, the scattering amplitude depends only on the difference between the final
and initial dressed momenta, p̄f − p̄i. This means that the physical observables do not change if
we redefine the laser field dressing such that

p̄f,i → p̄f,i + P, (18)

where P is an arbitrary four-vector. (Another transformation has to be introduced, for instance,
for the Breit-Wheeler process, as it has been discussed in [18].)

In general, the four-vector P can be represented as

P = g1ε1 + g2ε2 + g0k, (19)

where, in the absence of the laser field, gj = 0 (j = 0, 1, 2). It appears that the shifted dressed
momentum (18) is on the mass-shell (i.e., p̄f,i · p̄f,i is independent of pf,i) for a particular choice
of gj such that

g1 = µmec〈f1〉, g2 = µmec〈f2〉, g0 = 0. (20)

In this case,

p̄f,i · p̄f,i = (m̄ec)
2 = (mec)

2
[

1 +
2U0

mec2

]

, (21)

where m̄e can be called the electron dressed mass in the laser pulse, whereas

U0 =
1

2
µ2mec

2[〈f21 〉 − 〈f1〉
2 + 〈f22 〉 − 〈f2〉

2]. (22)

Note that, for the monochromatic plane wave, when 〈fj〉 = 0, j = 1, 2, and 〈f21 〉+〈f22 〉 = 1/2, the
last two equations lead to the previous result (14). This answers our first question raised in Sec. 1:
if one accepts the above definition of the momentum dressing (17) then the measurement of the

electron dressed mass induced by a pulse is equivalent to determining its three characteristics [19],

µ〈fj〉, j = 1, 2, and µ2[〈f21 〉+ 〈f22 〉]. (23)

Actually, this task belongs to a broader topic which is the diagnosis of powerful laser pulses. The
point being that, for such pulses, the conventional diagnostic methods developed for moderately
intense fields are not applicable. Therefore, one may determine the peak intensity of the laser
pulse by studying the properties of radiation generated in either the laser-modified recombination
process [20, 21, 22] or in the Thomson scattering [23]. It seems that this goal can be realized
even more effectively by analyzing the ionization spectrum of photoelectrons [24] (see, also
Ref. [25]). Another possibility is to exploit the chirp of the laser pulse in the Thomson or
Compton scattering [26, 27, 28]. Moreover, the problem of the relative change of the electron
mass dressing by two laser pulses of different shapes has been studied in [29]. The latter, however,
does not provide a method for a direct measurement of the electron dressed mass. The aim of
the next Sections is to discuss how the electron dressed mass can be determined directly (and,
from the theoretical point of view, very precisely even for extremely short one-cycle laser pulses)
from the spectrum of radiation generated during the Compton scattering.
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3. Coherent frequency combs

It is known that the coherent properties of radiation, which manifest themselves in interference
and diffraction experiments, can lead to very precise measurements of physical quantities. This
approach was initiated by T. Young and his famous double-slit experiment [30], which then
triggered the development of other experimental techniques (like diffraction gratings). Among
them, the frequency comb generation is of a particular interest. Generation of optical frequency
combs [31, 32] has become an invaluable experimental tool for precise measurements of optical
frequencies, that also enabled the creation of optical atomic clocks [33]. A particular realization
of this technique, called the high-order harmonic generation [34], has led to the development
of attoscience [35, 36]. This newly growing field is related to the interaction of matter with
attosecond pulses of coherent radiation. Also, it has been proposed that the interaction of
modulated laser pulses with relativistic and nearly monoenergetic electron beams can create x-
and γ-ray frequency combs in the keV or MeV region [37, 38]. This may extend the applicability
of frequency comb generation to nuclear and elementary particle physics. The same phenomenon
was studied for matter and anti-matter waves [37, 39].

It has been demonstrated for the Compton scattering stimulated by a finite train of identical
pulses [37, 38] that the following interference/diffraction formula, which describes the probability
amplitude of the process, Aσ(ωK , λi, λf), holds

Aσ(ωK , λi, λf) = exp
[

iΦσ(ωK , λi, λf)
] sin(πQ̄+/k0)

sin(πQ̄+/k0Nrep)
|A(1)

σ (ωK , λi, λf)|. (24)

Here, Nrep is the number of laser pulses in the train, A
(1)
σ (ωK , λi, λf) is the probability amplitude

of Compton scattering by a single pulse from the train, and Φσ(ωK , λi, λf) is the global phase.
Moreover, σ labels the polarization of the Compton photon, and λi and λf define the spin degrees
of freedom of the initial and final electron states, respectively. The coherent enhancement of the
Compton amplitude Aσ(ωK , λi, λf) is observed for such frequencies of emitted photons ωK,N

(with integer N), that satisfy the condition

Q̄+/k0Nrep = −N, Q̄+ = p̄+i − p̄+f −K+, (25)

provided that Nrep > 1. Here, the light-cone variable Q̄+ = (Q̄0 + n · Q̄)/2 (and similarly for
the remaining four-momenta of electron and photon) has been used. It follows from Eq. (25)
that the probability distribution of Compton scattering (∼ |Aσ(ωK , λi, λf)|

2) is enhanced by a
factor of N2

rep. Meaning that the energy spectrum of radiated photons consists of a sequence of
well separated peaks, which is in contrast to the Compton process induced by a single pulse (for
which Nrep = 1). Note also that, in contrast to the Thomson scattering, these peaks are not
exactly equally separated from each other over the whole interval of allowed frequencies (0, ωcut).
When ωK approaches the cut-off value, the distribution of ωK,N becomes increasingly denser.
Thus, one can get the regular frequency combs out of the Compton radiation only within limited
frequency intervals.

4. Generalized Klein-Nishina formula and laser pulse diagnosis

Eq. (25) allows us to determine the peak frequencies in the energy spectrum of emitted Compton
photons. After algebraic manipulations, we arrive at the generalized Klein-Nishina formula,

ω
(GKN)
K,N =

(N/Nosc)ωL

pi·nK

pi·n
+

νn·nK+g1pi,1+g2pi,2
(pi·n)2

+ (N/Nosc)ωL

ωcut

, (26)

which for the plane wave (i.e., when Nosc = 1 and gj = 0) reduces to the original one (1). Here,
g1 and g2 are defined in Eq. (20),

ν =
1

2
(µmec)

2(〈f21 〉+ 〈f22 〉), (27)
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and (for j = 1, 2)
pi,j = (pi · n)(nK · εj)− (pi · εj)(n · nK). (28)

Similar to the original Klein-Nishina formula, the quantum signature of Eq. (26) is hidden in
the definition of ωcut. The frequencies determined by Eq. (26) mark the positions of main peaks
in the Compton spectrum. Similarly, one can find the location of secondary peaks (if Nrep > 2)
and zeros (if Nrep > 1) in the angular-resolved frequency distributions. It is also worth noting
that the polarization-dependent terms appear now in the definition of the directly measurable
quantity; in other words, they affect the positions of peak frequencies in the Compton spectrum.
Next, we define the quantity

NGKN =
NoscωKωcut

ωL(ωcut − ωK)

(pi · nK
pi · n

+
νn · nK + g1pi,1 + g2pi,2

(pi · n)2

)

, (29)

which, according to (26), acquires integer values for peak frequencies ω
(GKN)
K,N .

The positions of the interference peaks allow us to determine parameters of the driving laser
field. In order to demonstrate this, we introduce the quantities,

η =νn · nK + g1pi,1 + g2pi,2, (30)

A(ωK) =
NoscωKωcut

ωL(ωcut − ωK)(pi · n)2
, (31)

B(ωK) =
NoscωKωcut

ωL(ωcut − ωK)

pi · nK
pi · n

. (32)

They depend on the initial electron energy and the geometry of the process. Except of η, they
also depend on the frequency of emitted photons. The latter means that, for a given frequency
distribution, η remains constant. Moreover, only η depends on the laser pulse parameters such as
µ2(〈f21 〉+〈f22 〉) and µ〈fj〉, j = 1, 2 (note that only these parameters are necessary for determining
the electron dressed mass). Using the above definitions, Eq. (29) can be rewritten as

A(ωK)η = NGKN −B(ωK). (33)

This equation determines η provided that we can unambiguously prescribe an integer number
NGKN to an arbitrary chosen peak. In general, this is impossible. Therefore, we choose instead

two arbitrary, consecutive peaks from the spectrum, i.e., ω
(GKN)
K,N and ω

(GKN)
K,N+1. By solving the

system of two equations (33) evaluated at ω
(GKN)
K,N and ω

(GKN)
K,N+1, we obtain that

η =
1−B(ω

(GKN)
K,N+1) +B(ω

(GKN)
K,N )

A(ω
(GKN)
K,N+1)−A(ω

(GKN)
K,N )

. (34)

This quantity is already independent of N . Thus, in order to determine three independent
parameters ν, g1, and g2 present in the definition of η, we should repeat this procedure for three
different geometries. This finally leads to the system of three linear equations for the unknown
ν, g1, and g2.

5. Illustration of the proposed diagnostic method

In the following, we shall consider the linearly polarized laser pulse such that, for 0 6 φ = k ·x 6

2π, the four-vector potential has the form A(φ) = A0εf(φ) [i.e., in Eq. (15), we take ε = ε1,

24th International Laser Physics Workshop (LPHYS’15) IOP Publishing
Journal of Physics: Conference Series 691 (2016) 012005 doi:10.1088/1742-6596/691/1/012005

6



0.02 0.04 0.06 0.08
0

0.1

0.2

ωK/mec
2

sp
ec

tr
um

 (
re

l. 
un

its
)

2 4 6
0

0.1

0.2

NGKN

sp
ec

tr
um

 (
re

l. 
un

its
)

0.2 0.4 0.6
0

0.1

0.2

ωK/mec
2

sp
ec

tr
um

 (
re

l. 
un

its
)

5 10 15
0

0.1

0.2

NGKN

sp
ec

tr
um

 (
re

l. 
un

its
)

Figure 1. Spectra of Compton radiation resulting from the head-on collision of a linearly
polarized laser pulse and an electron of momentum pi = −102mecez. The laser pulse (µ = 1
and ωL = 3×10−6mec

2) propagates along the z direction and it is polarized along the x direction.
These two axes define the scattering plane. The pulse has a sin2 envelope (35) with Nosc = 1
and Nrep = 1. The Compton photon is emitted in the direction determined by the polar angle
θK = 0.99π (left column) or θK = 0.995π (right column) and by the azimuthal angle ϕK = π,
with the polarization vector parallel to the scattering plane. In the upper row, the energy spectra
of Compton radiation are plotted as functions of the frequency ωK whereas, in the lower row,
as functions of NGKN. The vertical lines mark the integer values of the respective argument.
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Figure 2. The same as in Fig. 1 but for Nrep = 2. We clearly see that the peaks appear for
integer values of NGKN.
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f(φ) = f1(φ), f2(φ) = 0] and the electric field vector is E(φ) = −ωA0εf
′(φ). The shape function

f(φ) is defined via its derivative,

f ′(φ) =











0, φ < 0,

N ′

f sin
2
(

Nrep
φ
2

)

sin(NrepNoscφ), 0 6 φ 6 2π,

0, φ > 2π,

(35)

where we assume that f(0) = 0. The pulse described by this shape function consists of Nrep

identical subpulses, with Nosc cycles each. In other words, it can be treated as a finite train
of Nrep pulses. Regardless of this interpretation, it is justified to apply the theory derived in
Ref. [17] for the process driven by a single pulse. Since the modulated pulse (35) lasts for time
Tp we can define its fundamental, ω = 2π/Tp, and its central frequency, ωL = NrepNoscω. The
latter is supposed to be fixed and equal to ωL = 3×10−6mec

2 in all calculations performed below.
In the following, we assume also that, in Eq. (35), we have N ′

f = NrepNosc. This guarantees
that the time-averaged intensity carried out by the laser field is independent of Nrep and Nosc,
as for this particular choice of N ′

f the amplitude of the electric field scales as µωL.
To illustrate the diagnostic method described in the previous Section, we choose the extremely

short laser pulse consisting of only one cycle, i.e., in Eq. (35), we take Nosc = 1 and Nrep = 1.
In Fig. 1, we present the energy spectrum of radiation generated by such a pulse as functions of
either the Compton photon frequency ωK or the parameter NGKN, for two different kinematics.
For the polar angle θK = 0.99π (left column), one can hardly attribute an integer value of NGKN

to the broad peak which appears in the spectrum. On the other hand, for θK = 0.995π (right
column), one can prescribe integer values NGKN = 1 and NGKN = 4 to both peaks, even though
there are no additional peaks in between them. Let us also note that, if one tried to associate to
both peaks the consecutive integers NGKN = 1 and NGKN = 2, one would obtain the incorrect
estimation of the laser pulse characteristics 〈f〉 and 〈f2〉.

The situation changes if we apply such a pulse twice, meaning that Nosc = 1 and Nrep = 2
in Eq. (35). Now, as it is demonstrated in Fig. 2 for both polar angles, we observe peaks in the
spectrum to which one can prescribe unambiguously integer values of NGKN. This is particularly
evident for the most pronounced peaks. Next, choosing for both cases two adjacent peaks from
these spectra, we acquire from the numerical (or experimental) data the corresponding Compton
frequencies (without knowing what the integer values ofNGKN are prescribed to them). Applying
the method described in Sec. 4 one can estimate now the laser pulse characteristics. Namely,
for the considered shape function (35), they are very close to the exact values 〈f〉 = −0.375 and
〈f2〉 = 0.1328125. Note that, for larger Nrep, the peaks in the Compton spectrum practically do
not change their positions and they become sharper. Thus, for larger Nrep, the determination
of the laser pulse properties can be made with an increased precision.

6. Conclusions

The aim of this paper was to discuss the concept of the electron mass dressing by a short and
intense laser pulse. We have shown that this concept seems to be not as fundamental as for the
monochromatic plane wave (in general, for the polychromatic plane waves with commensurate
frequencies), as it does not follow directly from the Floquet-Bloch analysis of the Volkov solution.
However, with some modifications, it is possible to redefine the electron momentum dressing
such that it is on the mass shell with the dressed mass, independent of the asymptotic electron
momentum. If such a modification is accepted, then the analysis of the frequency combs in the
Compton scattering allows one to measure the dressed electron mass for arbitrarily short (even
one-cycle) and intense laser pulses. This is achieved by determining characteristics of the laser
pulse. From the practical point of view, the procedure described above provides a very precise
method of diagnosis of extremely intense pulses in cases when the conventional methods fail.

24th International Laser Physics Workshop (LPHYS’15) IOP Publishing
Journal of Physics: Conference Series 691 (2016) 012005 doi:10.1088/1742-6596/691/1/012005

8



Note also that this method is not only limited to the Compton or Thomson scattering, but can
be extended to other quantum processes as well (for instance, to the Breit-Wheeler process [39]
or to ionization of atoms and molecules [25, 40]).
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[39] Krajewska K and Kamiński J Z 2014 Phys. Rev. A 90 052108
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