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Abstract. Direct-drive–implosion experiments from both OMEGA and the National 
Ignition Facility (NIF) are critical to gain confidence in ignition predictions on the NIF. 
Adequate performance of hydrodynamically scaled 1.8-MJ ignition designs must be 
obtained on OMEGA at 26 kJ. Implosions on the NIF must be used to identify and 
mitigate the effect of laser–plasma interactions (LPI’s) on hydrodynamic parameters at the 
NIF scale. Results from spherically driven OMEGA cryogenic implosion experiments are 
described. Mitigation of nonuniformity sources and cross-beam energy transfer (CBET) is 
important for improving target performance on OMEGA. Initial polar–driven implosion 
experiments on the NIF have provided valuable measurements of trajectory and symmetry. 
Simulations that include the effect of CBET more closely reproduce the observed velocity. 

1.  Introduction 
In the direct-drive approach to hot-spot ignition, nominally identical laser beams irradiate a capsule 
containing a layer of cryogenic deuterium–tritium (DT), driving the shell inward like a rocket [1]. The 
converging shell performs PdV work on the hot spot, raising the temperature. If a sufficient number of 
alpha particles from the DT-fusion reaction are produced and the hot spot has sufficient areal density 
(~300 mg/cm2 at a temperature ~5 keV), the alpha particles deposit their energy, further raising the 
temperature and increasing the number of DT neutrons produced. Ignition is said to occur when the 
energy produced in the 14.1-MeV neutrons is greater than the laser energy used to irradiate the target. 

One-dimensional (1-D) target designs are characterized by the fuel adiabat α (the ratio of the 
pressure to the Thomas–Fermi pressure at peak shell density), implosion velocity Vimp  (the peak 
mass-averaged shell velocity), and ablation pressure Pa. The ignition threshold factor ITF1-D [2], 
defined as the ratio of the shell’s kinetic energy to the minimum energy for ignition [3], scales as 

( ) [ ]0.8 7
1 D K ign impITF min ~ ( ) ,aE E P I V Iα− = where I is the on-target intensity. Designs that 
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successfully ignite in multidimensional hydrodynamic simulations typically have ITF1-D values 
between 3 and 5 [2]. 

2.  Results from OMEGA implosions 
The OMEGA [4] laser is used to study direct-drive–implosion physics with the goal of developing and 
validating the models required to predict ignition. In order to be ignition relevant, cryogenic 
implosions on OMEGA are scaled [5] from ignition designs [6] for the NIF [7]. A typical OMEGA 
cryogenic implosion has a diameter of 860 µm with an ~3-ns-long shaped laser pulse at 26 kJ of laser 
energy. Three pickets that set the adiabat profile in the shell precede a main pulse [figure 1(a)]. 

Implosion energetics must be accurately modeled to simulate and predict performance. OMEGA 
implosions indicate that it is necessary to include the effect of nonlocal heat transport of the deposited 
laser energy [8] and CBET [9] to reproduce the observables related to energetics—time-resolved 
scattered light, trajectory, and timing of the neutron-production histories (figure 1) [9]. Nonlocal heat 
transport is important because of the finite mean free path of the energetic coronal electrons from the 
tail of their distribution. As figure 1(a) indicates, including only nonlocal transport significantly 
underestimates the time-resolved scattered light. Simulations, including the effect of CBET and 
nonlocal transport, reproduce the time-resolved scattered light very well. The trajectory [figure 1(b)] is 
inferred from gated framing camera images of self-emission, which peaks just outside the ablation 
surface [10]. Again, excellent agreement with the inferred trajectory and neutron rate timing is 
obtained when both CBET and nonlocal transport are included in the simulation. 
 

 

Figure 1. (a) Scattered light, measured laser pulse (gray); (b) trajectory of the ablation surface 
inferred from x-ray emission images; (c) neutron rate. Measured (black), collisional absorption with 
nonlocal heat conduction (dashed), collisional absorption with the effect of CBET and nonlocal heat 

conduction (dashed–dotted). 
 

The triple-picket laser pulse shape has been shown to achieve high, nearly 1-D areal density in 
cryogenic implosions [6]. Relative to the simulation that includes only collisional absorption as the 
mechanism of energy deposition, the inclusion of CBET effects reduces ablation pressure by nearly 
40% in OMEGA implosions and implosion velocity by nearly 15%. This can reduce ITF1-D by nearly 
a factor of 10. Options for improving ITF1-D include reducing the adiabat, increasing the implosion 
velocity by reducing shell mass or mitigating CBET, improving ablation pressure by mitigating 
CBET, and increasing the intensity on target. 

OMEGA cryogenic implosions have been performed for a range of implosion velocities and 
adiabats. The adiabat is varied by primarily varying the energy in the first picket. The timing between 
pickets is varied to optimize the adiabat profile in the shell. Different implosion velocities are obtained 
by varying the shell and ablator mass. The measured yields increase with implosion velocity 
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(figure 2), consistent with simulation, indicating that higher nonuniformity growth rates related to the 
higher implosion velocity do not overwhelm the 1-D effect of implosion velocity on the temperature. 
A fit to the data in figure 2(a) reveals, however, that while simulated yields scale as 6

imp,V  measured 
yields scale as 5

impV  suggesting that nonuniformities do compromise the yield. 
Two-dimensional (2-D) simulations using the hydrodynamic code DRACO [11] have been 

performed for a range of cryogenic implosions [12]. These simulations include short-wavelength 
nonuniformities from laser imprint due to single-beam uniformity ( # 150) and the effect of beam 
smoothing through smoothing by spectral dispersion (SSD) [13], longer wavelength nonuniformities 
( # 10) including the roughness of the inner ice layer, and beam imbalances such as mistiming and 
power imbalance. For the moderate adiabat (α ~ 4) implosions, these simulations reproduce all the 
observables well (simulated yield is within 75% of the measured value, whereas ion temperature, burn 
width, hot-spot size, and areal density are within 90% of the measured values), indicating that these 
implosions are adequately understood. For lower-adiabat implosions, such as α = 2, the simulations do 
not reproduce many of the observables including areal density and hot-spot radius. Areal density, in 
particular, is compromised at lower adiabats; for example, at α = 2 the measured areal density is ~35% 
of the simulated value (figure 3). The decrease in areal density is correlated with increased x-ray 
emission from the core relative to spherically symmetric simulations, suggesting the mixing of ablator 
carbon into the hot spot [14]. The role of outer-surface defects has been investigated as a possible  
source of this degradation [15]. These simulations indicate that defects smaller than 1 µm in height  
can significantly compromise performance. Other possible sources of areal density degradation being 
investigated include higher levels of single-beam nonuniformity, void formation at the ice–ablator 
interface during the cooling process, early-time laser shinethrough, etc. Ongoing identification  
and mitigation of these sources of nonuniformity are expected to improve cryogenic target 
performance on OMEGA. 
 

  

Figure 2. Measured yields (gray) and simulated 
yields (black) from cryogenic DT OMEGA 
implosions versus implosion velocity. Each 
point represents a single OMEGA shot with 
simulated values of adiabat between 2 and 5. 

Figure 3. Ratio of measured areal density to 
simulated areal density versus the adiabat. 

 

 
To improve ITF1-D requires a further decrease in adiabat beyond the typical values in current 

implosions. Given current sources of performance degradation, it is less likely that lower adiabats than 
2 can lead to high-performing implosions. 

Increasing ablation pressure and implosion velocity by mitigating the effect of CBET is necessary 
to improve OMEGA target performance and improve ITF1-D. Targets with mid-Z ablators, such as Si, 
have been shown to mitigate the effect of CBET [16]. CBET results in the transfer of laser energy 
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from the incoming rays to the outgoing rays mediated by ion-acoustic waves near the quarter-critical 
surface in the corona. The thickness of the layer is chosen such that Si stays at the quarter-critical 
region of the corona when the CBET gain is expected to be the highest, i.e., during the main drive of 
the pulse. With a higher average charge than CH, the temperature at the quarter-critical surface is 
larger with the mid-Z layer. Since the CBET gain scales inversely as the temperature [9], a Si layer 
reduces the extent of CBET. 

Cryogenic targets with multiple layers will be investigated on OMEGA. The layers from the 
outside are an outer doped-plastic layer (to reduce imprint [17], thereby permitting more-stable 
implosions at a higher implosion velocity); a thin Si layer (<1 µm); a Be layer, with an inner cryogenic 
DT layer. Beryllium (Be) offers a higher ablation pressure than the historically used plastic (CH) 
ablator [16]. Simulations indicate that the combination of Be and a mid-Z material (Si) increases 
ablation pressure by 15% and velocity by nearly 5% through a better choice of ablator material and by 
mitigating CBET in the Si. 

Other ways to mitigate CBET include modifications to the laser. The use of smaller phase plates 
during the main pulse reduces beam overlap and therefore the interactions of rays that result in the 
greatest CBET transfer. Improved target performance in room-temperature implosions has been 
demonstrated with this concept [18]. Further development involves using “zooming” phase plates [19]. 
There the beam size matches the target radius initially in the implosion and is reduced later during the 
main pulse, permitting reduced initial nonuniformity seeds while mitigating CBET later in the 
implosion. The use of different wavelengths on different beams causing the greatest overlap will also 
be investigated. 

3.  Results from NIF implosions 
OMEGA implosion performance cannot be simply extrapolated to NIF scales because of the different 
density scale lengths in the corona (~150 µm for OMEGA-scale 26-kJ implosions compared to 
~600 µm for the ignition-scale implosion at 1.8 MJ). Most laser–plasma interactions scale with 
increasing coronal density scale lengths. 

Room-temperature experiments are being conducted in the polar-drive (PD) configuration [20] on 
the NIF to validate models and identify and mitigate the effect of LPI on implosions. Ideally, direct 
drive requires spherical drive with beams arranged symmetrically around the target chamber, like the 
OMEGA geometry; on the NIF, however, beams are arranged axisymmetrically. Simulations indicate 
that the reduced irradiation at the equator can be corrected by a combination of beam repointing, 
where beams at higher latitudes are repointed toward the equator, an optimal choice of pulse shapes 
for the different rings, and custom beam profiles. Ongoing experiments [21] use the existing NIF 
phase plates, defocused to improve low-order uniformity. These are not optimal, however, for PD and 
offer limited freedom in design. These experiments are intended to identify and demonstrate 
mitigation of LPI effects on gross hydrodynamic parameters, such as symmetry and implosion 
velocity, and not to achieve high-performance direct-drive implosions. 

The target is an 80-µm-thick CH shell driven with an α ~ 3 pulse shape comprising a low-intensity 
foot rising to a flat-top pulse. The average intensity at the initial target radius is ~4 × 1014 W/cm2. The 
hydrodynamic code DRACO has been modified to include a model of CBET [22] based on the 
formulation of Randall et al. [23]. Preliminary simulations with this model indicate that CBET can 
have an observable effect on inferred velocity and shape. As the contour plot of the instantaneous 
deposited laser energy (figure 4) indicates, significant energy is transferred out of the equator into the 
outgoing rays of beams from the other rings relative to a simulation that includes only collisional 
absorption. This results in an overall reduction of time-integrated absorbed energy from 90% to 68% . 
The drive near the equator is also reduced, leading to a more-oblate shape. 

The trajectory of the ablation surface is inferred from the time-resolved x-ray framing camera 
images [9]. The peak of the emission is identified using the method of matched filters and averaged in  
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Figure 4. Contour plot of instantaneous laser energy deposited versus radius of the target and polar 
angle (a) with only collisional absorption and (b) with the inclusion of the CBET model. 

 
angle to obtain an average radius versus time. This method has provided an important measurement 
for validating laser deposition and heat conduction models on OMEGA, as shown in figure 1(b). 
Simulations indicate that implosions at this intensity are relatively insensitive to the model of heat 
conduction, making this an ideal test for the CBET model. The images, including the effect of the 
pinhole used in the experiment, and the experimental gate width are created from the DRACO 
simulation using the code Spect3D [24]. The same procedure used to extract trajectories from the data 
is used on the simulated images. The velocity of the ablation surface inferred from the trajectories is 
shown in figure 5. Better agreement with experiment is obtained when CBET is included in the 
simulation (figure 5). The resulting difference between simulation and experiment may be due to the 
uncertainties in the beam profiles used in the simulation, the relatively lower resolution of the quarter-
critical surface in the simulation, the effect of short-wavelength nonuniformity growth that could 
potentially decouple the ablation surface from the center of mass (an effect not included in the 
simulation), or limitations in the modeling (for example, an ion-acoustic wave damping coefficient is 
currently parameterized by a single value of 0.2; larger values indicate greater damping). These 
sources are currently being investigated. 
 

 

Figure 5. Inferred ablation surface velocity versus the radius of the peak emission region. Symbols: 
measured; black curve: simulated with only collisional absorption; gray curve: simulated with the 

CBET model. 

4.  Summary 
Results from direct-drive OMEGA cryogenic implosions show that implosion energetics can be 
reproduced well using models of CBET and nonlocal heat conduction. Yields and ion temperatures 
from cryogenic implosions scale with implosion velocity, indicating that nonuniformity does not 
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overwhelm the increase in these values from higher implosion velocity. Moderate-adiabat (α ~ 4) 
target performance can be described well using two-dimensional simulations that include single-beam 
nonuniformity, beam imbalances, and inner ice roughness. Lower-adiabat performance cannot be 
explained with these sources of nonuniformity, indicating that other sources need to be accounted for. 
Candidates such as outer surface defects, void formation at the ice–ablator interface during the 
cryogenic process, and possible underestimation of laser imprint seeds are being investigated. 
Mitigating CBET is also important for improving cryogenic target performance. 

Implosions on the NIF with the existing x-ray drive configuration are performed to study 
symmetry, velocity, and preheat. Simulations with the newly developed CBET model in DRACO 
indicate that velocity is significantly influenced by CBET. Future PD implosions on the NIF will be 
used to validate the CBET model and study various ways of mitigating CBET, including mid-Z layers 
and different wavelengths on the inner and outer cones. 
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