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Abstract. The sequential to correlated-tunneling transition of two identical bosons confined
in a symmetrical double well potential is studied using a time-dependent variational formalism.
Increasing the strength of the short-range boson-boson interaction, the probability of finding
both bosons in the same well allow to identify three regimes. For small values of the boson-
boson coupling constante, this probability display beatings. Then, the probability of finding
both bosons in the same well becomes quasi-periodical in time, for almost all values of the
coupling constant; however, there is a zero-measure set, which contains an infinity of points, for
which this probability is time-periodic. Finally, for larger values of the coupling constant, this
probability changes periodically. Based on the dynamics of the probability of finding one boson
on each well and increasing the boson-boson interaction, we find that tunnelling changes from
a regime where one boson tunnels after the other to a regime in which they tunnel together.

1. Introduction
Tunneling, one of the most characteristic quantum effects, has been studied in many systems. In
the context of cold atoms, Josephson tunneling of Bose-Einsteins Condensates (BEC) in multi-
well systems have received considerable attention [1–3]. Recent experimental techniques have
allowed the exploration of the tunneling of a few bosons [4]. In fact, optical lattices permit a high
control of both the geometry and the depth of confining potentials [5]. In this contribution, we
study the tunneling of two bosons in a double-well potential using a time-dependent variational
approach.

2. Physical system
We consider two 87Rb atoms, with mass of 144.42×10−27kg, to be confined in a double well
potential (Figure 1, dashed line). The width of each well and of the h×3kHz potential barrier
are 10µm and 2µm [6], respectively. Experimental reports of tunneling in these systems describe
a sequential to correlated-tunneling transition [4, 7]. Previous theoretical treatments [8–11]
show sequential tunneling for weak boson-boson interactions and correlated tunneling near the
fermionization limit.

We use dimensionless quantities, distances in units of ξ=1µm, energies in units of ε=10−31J,
and times in units of τ=~

ε . For example, the height of the potential barrier is v0≈19.88 in these
units. The single-particle Hamiltonian then becomes

h0(x) = − ~2

2mξ2ε

d2

dx2
+ v(x). (1)
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The (single-particle) eigenvectors can be given in analytic form, but in terms of the eigenvalues
of h0(x), which are the solutions of a trascendental equation. The two smallest eigenenergies,
E0≈0.03548 and E1≈0.03552 are well separated from the other eigenvalues, En>0.14 for n ≥ 2.

We choose the first eigenfunction ψ0(x)=〈x|0〉 to be non-negative everywhere, and the second,
ψ1(x)=〈x|1〉 to be positive for x≥0. Thus, the wavefunction 〈x|L〉=ψL(x)= 1√

2
(ψ0(x) − ψ0(x))

(ψR(x)= 1√
2
(ψ0(x)+ψ0(x))) describes a particle in the left (right) well. The tunneling time from

one well to be other is 7.5× 104.

Figure 1. Realistic (solid line) and square
double well potentials (dashed line).

The two-particle Hamiltonian is H(x1, x2)=h0(x1) + h0(x2) + λδ(x1 − x2), where x1 and x2
are the dimensionless positions of the two bosons, and λ is the interaction coupling constant.

3. Time-dependent variational principle
The time-dependent variational principle, which provides and approximation of the exact
dynamics, corresponds to the minimization of the action functional S=

∫ τ
0 dt (i 〈Ψ|Ψ〉 − 〈Ψ|H|Ψ〉)

=
∫ τ
0 dtL(t). In order to investigate the tunneling dynamics, we use the trial wave function

Ψ(x1, x2, t)=c1(t)ψ0(x1)ψ0(x2) + c0(t)√
2

(ψ1(x1)ψ0(x2) + ψ0(x1)ψ1(x2)) + c−1(t)ψ1(x1)ψ1(x2).

The “Lagrangian” L(t) depends on the value of the integrals Iij=
∫
dxφ2i (x)φ2j (x), i, j=1, 2.

By setting E0=
EM−δ

2 and E1=
EM+δ

2 , and employing the approximation Iij≈I=0.07235, with
an error of about 3 parts per ten thousand, we obtain the Lagrangian,

L(t) = ic∗−1(t)ċ−1(t) + ic∗0(t)ċ0(t) + ic∗1(t)ċ1(t)−
{
EM + δ(−|c1(t)|2 + |c−1(t)|2)

+λI
[
1 + |c0(t)|2 + c−1(t)c

∗
1(t) + c∗−1(t)c1(t)

]}
(2)

The tunneling process depends on the coefficients c∗m(t), m=0,±1, whose equations of motion

are given by d
dt

(
∂L

∂ċ∗m(t)

)
= ∂L
∂c∗m(t) .

4. Return probability
In order to investigate the tunneling process, we assume that both bosons are initially on the
left well, i.e., the initial state of the system is |LL〉. The probability that they remain on the
left well is (g = λI),

PLL =
1

2

(
1 + cos(gt) cos

(
t
√
g2 + δ2

))
+
g sin(gt) sin

(
t
√
g2 + δ2

)
2
√
g2 + δ2

−
δ2 sin2

(
t
√
g2 + δ2

)
4 (g2 + δ2)

(3)
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The probability of finding one boson on each well, PLR= δ2

2(g2+δ2)
sin2

(√
g2 + δ2t

)
, reaches a

maximum of 1
2 for vanishing boson-boson interaction and decreases to zero as the interaction

is increased. Thus, the tunneling is sequential for small values of the interaction constant and
correlated for large values.

The behaviour of the quantum return probability PLL present three distinct regions. The first
region, corresponds to very small values of the effective coupling constant g, when the return

probability can be approximated as PLL≈1
2

(
3 + 4 cos(gt) cos(

√
g2 + δ2t) + cos(2

√
g2 + δ2t)

)
.

In this region, the most important characteristic is the presence of beatings: a low-frequency
envelope cos(gt), which modulates the high-frequency periodic oscillations cos(

√
g2 + δ2t). The

term −1 + cos(2
√
g2 + δ2t) becomes important when the amplitude of the beating, cos(gt), is

small. These details are shown in Figure 2.

Figure 2. Population of the state |LL〉 with
time measured in units of 1/δ, for g= δ

100 .

The effective interaction coupling constant g and the energy δ are of the same order in the
second region, where the behaviour of the return probability is quasi-periodic (See Figure 3). In
this region there are infinitely many values of the coupling constant where the return probability
becomes periodic: when g= αδ√

1−α2
, where α is a rational in [0, 1) (see Figure 4(a)). In fact,

in this case the return probability has contributions corresponding to the angular frequencies
ω, ω(1± α), with ω=

√
g2 + δ2.

(a) (b)

Figure 3. Quase-periodic evolution of the population of the state |LL〉 with time measured in
units of 1/δ, for (a) g= δ

3 and (b) g= δ
2 .
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(a) (b)

Figure 4. Periodic evolution of the population of the state |LL〉 with time measured in units
of 1/δ, for (a) g= δ√

3
and (b) g=2δ.

The last region corresponds to an effective coupling constant much larger than the energy

difference δ, when the return probability becomes periodic PLL(t)≈1
2

(
1 + cos

(
δ2t
2g

))
, (see

Figure 4(b)).

5. Conclusions
We have considered the problem of tunneling of two interacting cold bosons in a double well
potential. Using a simple trial function, we have used the time-dependent variational principle
to show that there is a transition from sequential to correlated tunneling as the coupling constant
is increased. For small values of the coupling constant, the return probability displays frequency
beating; for intemediate values, the return probability is quasi-periodic except for an infinity of
values when it becomes periodic. For large values of the coupling constant, the return probability
is periodic; the larger the coupling constant the larger the tunneling period.
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