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Abstract. Using the atomic levels previously employed to demonstrate a two-photon maser,
we show that the atom-atom entanglement produced by the successive passage of two three-level
Rydberg atoms across a single-mode lossless cavity can be enhanced using the Stark shift. The
atoms are assumed to be prepared in their excited states and to interact with the field during
the same amount of time. Employing a physically motivated perturbation-theory approach, we
obtain an effective two-level Hamiltonian. We show that, within the limits of validity of the
approximation, atomic entanglement can be controlled by changing the frequency of the cavity
field, and can be enhanced up to a maximum where the squared concurrence attains the value
16/27.

1. Introduction
Entanglement was initially discussed as a strange phenomenon which would demonstrate the
lack of completeness of quantum mechanics [1]; today it is, without question, one of the
most important concepts in the fields of quantum communication and quantum information
[2]. Entanglement has been produced in several different systems, most of them involving
matter-radiation interaction; in particular, in cQED (Cavity Quantum Electrodynamics)
experimental setups [3]. In this context, one-photon processes have been extensively discussed
[3]. Multiphoton processes, especially two-photon processes [4–7] are well known; however, the
investigation of the production and control of entanglement employing these processes have
received little attention. A remarkable exception is a recent report [8] in which, using ideas
previously discussed in other systems [9, 10], two-photon precesses are proven useful to control
the entanglement between two atoms which do not interact directly.

In this contribution, we reconsider the atomic states used in the reference [11] to demonstrate
a two-photon maser, and show that the atomic entanglement of two atoms sent through a high-Q
cavity can be controlled by an appropriate choice of detuning of the electromagnetic field with
respect to the allowed atomic transitions. In section 2, we present the physical system and show
why the analysis of [8] fails in this case. Using a physically motivated perturbation theory, we
find an effective Hamiltonian; we show that the atomic concurrence can be controlled between
zero and 4/3

√
3 under a particular choice of interaction time (section 3).
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2. Physical system
We consider a situation in which two Rubidium atoms sequentially traverse a high-Q microwave
superconducting cavity. The relevant atomic states of the 85Rb atoms are the ground state
39S1/2 (|g〉), the intermediate state 39P3/2 (|i〉) and the excited state 40S1/2 (|e〉) (see Figure
1). The transition frequency between the excited (intermediate) and ground state is ωeg/2π=
136.83174GHz (ωig/2π= 68.37687GHz), and the frequency of the single-mode cavity field is ω.
The atom-field coupling between the intermediate level and the other states is described by the
one-photon Rabi angular frequencies Ωei≈Ωig≈0.7MHz=Ω.

∆
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Figure 1. Relevant energy
levels of the Rubidium atom.

The Hamiltonian of the system in the dipole- and rotating-wave approximations is

Ĥ = ~ωâ†â+
∑

k=e,i,g

~ωk |k〉 〈k|+ ~Ω
(
âŜ+

ig + â†Ŝ−ig + âŜ+
ei + â†Ŝ−ei

)
, (1)

Where the operators S+
kl are the raising operators between levels |k〉 and |l〉, and the S−kl are

the corresponding lowering operators. The transitions |g〉 ↔ |i〉 and |i〉 ↔ |e〉 are assumed to be
almost resonant, i.e., the one-photon detunings are small in the sense that δg≡ωi−ωg−ω�ωi−ωg
and δe≡ωe−ωi−ω�ωe−ωi. We also define the two-photon detuning ∆=δe+δg=ωei+ωig−2ω.

Employing a canonical transformation method the authors of [8] find the effective Hamiltonian

HGMN = [∆ + (βe + βg)a
†a]Sz +

1

2
(βe − βg)a†a+ g(S+

ega
2 + S−ega

†2), (2)

Where Sz=(|e〉〈e|−|g〉〈g|)/2. Here, g=Ω2(δg−δe)/(δeδg), and the Stark shifts associated with
the levels e and g are, respectively, βe=Ω2/δe and βg=Ω2/δg. The authors restrict themselves
to the case βe=β=βg, and show interesting possibilities of control of atom-atom concurrence
for the parameters β = ∆ = 2g and β =−∆ = g. We show that the particular choice used in
Reference [8] breaks down in the case of a single intermediate level.

The equality of the Stark shifts of the levels |e〉, βe, and |g〉, βg, imply that the one-photon
detunings are smaller than the two-photon detuning ∆, δg=

1
2∆=δe. In this case it is inconsistent

to ignore one-photon transitions, an implicit assumption in the derivation of Hamiltonian (2).
Taking as reference values those of zero Stark shift and exact two-photon resonance, striking

differences on the values of atom-atom entanglement were obtained in [8] for β/g = 1 and
∆/g=−1. We consider the slightly more general form β/g=x2 and ∆/g=−y2, for x and y real
parameters. If we multiply the dimensionless Stark parameter and the dimensionless two-photon

detuning, we get β∆=− (xyg)2<0, which is incompatible with the equality β∆=Ω2

δg
×2δg=2Ω2>0.

Our results, to be presented in the following sections, complement those of Reference [8].
We find an effective two-level approximation by defining a physically motivated perturbation

theory. Efficient two-photon processes between the ground and the excited state, and almost
no population transfer to the intermediate state, are expected for large one-photon detunings
(|δe|, |δg|�

√
n+ 1) and a small two-photon detuning (|∆|�

√
n+ 1). We define the one-photon

detuning to be of zeroth order, the terms proportional to the dipole moments to be of first order,
and the two-photon detuning to be of second order. The effective Hamiltonian, up to second
order and ignoring the contribution of the intermediate level, is given by
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Heff = ~
{

∆− Ω2

δg

(
â†â+ 1

)}
|e〉 〈e| − ~Ω2

δg

(
â†â+ 2

)
|g〉 〈g| − ~Ω2

δg

{
â2Ŝ+

eg + â†2Ŝ−eg

}
. (3)

3. Atomic entanglement
We consider a situation in which two atoms, initially prepared in their excited states, traverse
the initially empty cavity. The atoms, which are never simultaneously present in the cavity,
interact with the cavity field for the same amount of time. Though the atoms never interact
directly, they become entangled. If the interaction time is set to τ= π

ω2
, the atomic concurrence

is C(s)=2s
√

1− s where s=sin2(ϕ) sin2
(
π ω0
ω2

)
, tanϕ=Ω2

2δ

√
2/
(

∆
2 + Ω2

2δ

)
, and

ωn =

√(
∆

2
+

Ω2

2δ

)2

+

(
Ω2

2δ

)2

(n+ 1)(n+ 2), n = 0, 2. (4)

The interaction time, of the order of hundreds of microseconds, is reasonable in cQED
experiments. When s= 2/3, concurrence attains its maximum value (under the condition of
equal interaction times) Cmax= 4

3
√

3
≈ 0.77<1. When the two-photon detuning is varied between

-20kHz and 20kHz, atomic concurrence varies from almost zero to Cmax, then to a local minimum
and again to Cmax, before decreasing to almost zero (as shown in Figure 2).
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Figure 2. Atomic concurrence as
a function of two-photon detuning.

4. Conclusions
We considered the sequential passage of two Rubidium atoms, prepared in specific Rydberg
states, through a high-Q cavity, initially prepared in its vacuum state. We have shown that,
choosing a particular interaction time, the two-photon detuning can be used to control the
atomic entanglement. To assess the feasibility of the present scheme, it is necessary to include
dissipation and small changes on the interaction time in the mathematical model.
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