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Abstract. We study spin-1 bosons confined in a one-dimensional optical lattice, taking into
consideration both ferromagnetic and antiferromagnetic interaction. Using the density matrix
renormalization group, we determine the phase diagram for the two firsts lobes and report
the evolution of the first and second Mott lobes with respect to the spin-exchange interaction
parameter (U2). We determine that for the antiferromagnetic case, the first lobe is suppressed
while the second grows as |U2| increases. For the ferromagnetic case, the first and second Mott
lobes are suppressed by the spin-exchange interaction parameter. We propose an expresion to
describe the evolution of the critical point with the increase in |U2| for both cases.

1. Introduction
The confining of ultracold atoms in optical lattices has been a very important tool for the study
of condensed matter. The precision and the easy control of the various couplings makes of
this a natural quantum simulator. Fermionic and bosonic systems have been explored in these
experimental setups. The most well-known experiment was carried out in 2002 by Greiner et
al. [1]. They show the phase transition from a superfluid state to the Mott insulator state, which
has been much studied theoretically [2, 3].

In conventional magnetic traps, the spins of atoms are frozen so effectively that they behave
like spinless particles. Now, recent progress in cooling techniques has opened the door to new
studies of these systems. For instance, using purely optical traps, alkali atoms such as 87Rb or
23Na can be condensed and loaded into an optical lattice, preserving the spin component [4]. The
size of the effects of the spin interaction can be irrelevant when the number of atoms is relatively
large, so, it’s natural to think about the idea of taking these interactions into consideration in
optical lattices where the number of atoms is about 3 or 4 per lattice site [1].

The spin-1 Bose-Hubbard model shows the superfluid to Mott insulator phase transition [5,6],
and the phase diagram was presented and discussed by Rizzi et al. [7] using the density ma-
trix renormalization group (DMRG) method for the antiferromagnetic case, and by Batrouni
et al. [8] using quantum Monte Carlo for the ferromagnetic case for small lattices. They show
the location of the phase boundary, and Rizzi shows the asymmetry present with the odd-even
filling discussed in [6]. But evolution of the critical point with the change in the spin-exchange
interaction parameter has never been shown. This is the aim of this paper.
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2. Model
The Hamiltonian for describing spin-1 bosons in an optical lattices is given by

H = −t
L−1∑
i=1,σ

(
b̂†i,σ b̂i+1,σ + h.c.

)
+
U0

2

L∑
i=1

n̂i (n̂i − 1) +
U2

2

L∑
i=1

(
S2
i − 2n̂i

)
(1)

Where b̂†iσ creates a boson with spin component σ at site i in a lattice of L sites, h.c denotes

the hermitian conjugate, n̂i = Σσ b̂
†
i,σ b̂i,σ and Si = Σσ,σ′ b̂†i,σTσ,σ′ b̂i,σ′ are the number and spin

operators for site i where T are the spin 1 Pauli matrices [5]. The first term in the Hamiltonian
represents the kinetic energy and t is the hopping parameter, and the second and third term
represent the on-site interaction (U0) and spin exchange interaction (U2), respectively. The local
strengths are given by

U0 =
4π~2

M

a0 + 2a2
3

and U2 =
4π~2

M

a0 − a2
3

(2)

Where an are the scattering lengths and M is the mass of the atoms. These coupling
parameters obey the constrain −1 < U2/U0 < 1/2, U2 can be positive (antiferromagnetic case)
or negative (ferromagnetic case) [4]. We fix our energy scale taking U0 = 1.

3. Results
To study the Hamiltonian (1), we used the finite-size density matrix renormalization group
method. The local Hilbert space for the on-site part of the Hamiltonian is fixed, imposing a
maximum occupation number n̂max = 4. We carried out five iterations, considering m = 250
states per block, and the discarded weight was around 10−8 or less.
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Figure 1. (Color online) Antiferromagnetic case. Chemical potential versus 1/L for U2/U0 =
0.1, density ρ = 1 and (a) t/U0 = 0.1 (b) t/U0 = 0.24. (c-e) Phase diagrams for the first two
Mott lobes of the model case for U2/U0 = 0,0.1 and 0.2.

For a small kinetic energy, we expected that the bosons would be localized in the lattice
and the system would be in a Mott-insulator phase. In order to show this, we calculated the
energy for adding or removing a boson, given by µa(L) = E(L,N + 1, Sz) − E(L,N, Sz) and
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µr(L) = E(L,N, Sz)−E(L,N−1, Sz) respectively, where E(L,N, Sz) is the ground state energy
for L sites, N particles and Sz spin component. Following Katsura, our results are obtained
considering Sz = 0 for the ground state [10]. The dependece of the size of the system on
adding or removing energy is shown in Figure 1(a) for ρ = 1, t/U0 = 0.1 and U2/U0 = 0.35;
we can see that the added energy decreases and the removed energy increases as the lattice size
increases. It can be seen that the dependence is quadratic, and we can determine its values at
the thermodynamic limit. We calculated the gap given by ∆ = µa(L)− µr(L), and obtained a
nonzero finite value, showing the existence of a Mott insulator state. In Figure 1(b), we show
the addition and removal energies for ρ = 1, t/U0 = 0.24 and U2/U0 = 0.35. It can be seen that
the dependence now becomes linear, and at the termodynamic limit the gap is zero, showing
the existence of a superfluid state.

In Figure 1(c), we show the phase diagram for the two first Mott lobes (ρ = 1 ρ = 2) of the
model, taking U2/U0 = 0. We observe that our results are in accordance with the reported results
for the spinless case [11]. On the other hand, if we turn on the spin interaction when considering
the antiferromagnetic case, we obtain that the Mott insulator area for ρ = 1 decreases and for
ρ = 2 increases with the spin-exchange interaction parameter, confirming the odd and even
asymmetry discussed by Imambekov [5]. This behavior is shown in Figure 1(a) for U2/U0 = 0.1
and Figure 1(b) U2/U0 = 0.2. Also, at the no-hopping limit (t/U0 = 0) the espin-1 Bose-
Hubbard model exhibits features that are in contrast with the spinless model. In Figure 1(d-e),
we show that the antiferromagnetic interaction favors the singlet state, where the total local spin
is Si = 0 and the energy is set by En = niU0−2U2. In Figure 1(f), we report the evolution of the
critical point. It can be seen that the critical value increases for ρ = 2 and decreases for ρ = 1
monotonically, and the best possible fit would be quadratic for both cases. For ρ = 2, we see
that the spin interaction favors the Mott insulator state, and in order to evolve into superfluid
statea large kinetic energy is necessary as the spin-exchange interaction parameter increases.
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Figure 2. (Color online) Ferromagnetic case. The chemical potential versus 1/L for U2/U0 =
−0.2, density ρ = 2 and (a) t/U0 = 0.04 (b) t/U0 = 0.13. (c-e) Phase diagrams for the first two
Mott lobes of the model for U2/U0 = 0,−0.2 and −0.3.

For the ferromagnetic case, which has not been much studied, we performed a numerical
study at the thermodynamic limit, in contrast with Batrouni et al. [8] who show the phase
diagram considering finite small lattices and using quantum Monte Carlo (QMC). Based on the
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power of our DMRG code, we extended their calculations to the thermodynamic limit. Then,
considering ferromagnetic interaction, we show that for small kinetic energy the system has a
nonzero finite value for the gap, as is shown in Figure 2(a), and the system will be in a Mott
insulator state, as in the antiferromagnetic case. If the hopping parameter increases, the gap
will vanish at a critical value and the system evolves into the superfluid state, as is shown in
Figure 2(b). Again it is possible to see that in the insulator region the best fit is quadratic,
whereas in the superfluid region it is linear. In Figure 2(c-e) we show the phase diagrams for the
ferromagnetic case for the two first Mott lobes (ρ = 1 ρ = 2) of the model. We show that the
area of the Mott lobes decreases with an increase in the spin-exchange interaction, in contrast
with the antiferromagnetic case, which accord with Batrouni. Also, at the no-hopping limit, the
energy is set as En = ni(U0 + U2), implying that the interaction favors on-site ferromagnetic
states where the total local spin is Si = 2. In Figure 2(f), we report the evolution of the critical
point. It can be seen that the critical value decreases monotonically for ρ = 1 and ρ = 2, and the
best possible fit would be quadratic for both cases. We see in both cases that the spin interaction
favors the superfluid state, and to evolve into a Mott insulator state, a small kinetic energy is
necessary as the spin-exchange interaction parameter increases. Furthermore, if we compare the
behavior of the critical point for the first Mott lobe in each case, (U2 < 0 and U2 > 0) in Figure
2(f) and Figure 1(f), we can see that the evolution is almost the same, and the corresponding
fits would be similar.

4. Conclusions
We performed a numerical study of the ground state of the spin-1 bosons confined in a
one-dimensional optical lattice. Using the density matrix renormalization group method,
we determined the phase diagram for the first lobes (ρ = N/L = 1 and 2), reporting
the evolution of the critical point of the transition, calculated by means of the chemical
potential with respect to the spin-exchange interaction parameter (U2), for ferromagnetic and
antiferromagnetic interactions, and showed that the best fit would be quadratic in both cases.
For the antiferromagnetic case, we found that the area of the first lobe decreases while that
of the second increases as the |U2| increases, and for the ferromagnetic case, we calculated the
phase diagram at the thermodynamic limit, reporting that the area of the first and second Mott
lobes decreases as |U2| increases. We conclude that the behavior of the critical point for the first
Mott lobe is almost the same for both cases considered.
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