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Abstract. The two-dimensional Baxter-Wu model with spin-1, in the presence of a crystal
field, is studied by using Monte Carlo simulations. The standard single-spin-flip Metropolis
algorithm is used to generate the configurations from which the order parameter, specific heat
and magnetic susceptibility are measured. Single histogram techniques are used to get the
results close to the phase transitions. The finite-size scaling procedure is employed in order
to obtain the critical behavior. The simulations have shown that the critical exponents are
different from the spin-1/2 case and are crystal field dependent.

1. Introduction

The Baxter-Wu model was first introduced by Wood and Griffiths [1] as a model which does not
exhibit invariance by a global inversion of all spins. It is defined on a triangular lattice and can
be described by the Hamiltonian

H=-J Z 5i5jSk, (1)

<ijk>

where the exchange interaction J is positive and the sum is over all triangles made up of
nearest-neighbor sites on the triangular lattice. For the spin-1/2 model, where s; = +1, the
exact solution obtained by Baxter and Wu gives kpT,/J =2/In(1+V2),a =v =2 and y = %
[2], where kp is the Boltzmann constant, T is the critical temperature, and «, v and 7 are the
critical exponents of the specific heat, correlation length, and susceptibility, respectively. The
system has also been studied with quenched impurities by Monte Carlo [3] and Monte Carlo
renormalization group approaches [4]. Conformal invariance studies [5, 6] have shown that the
pure spin-1/2 Baxter-Wu and the four-state Potts models have the same operator content and
are in the same universality class. More recently, the short-time critical dynamics has been
investigated through the relaxation of the order parameter at the critical temperature by Monte
Carlo simulations [7].

On the other hand, for spin values greater or equal to one there are neither exact solutions
nor even much approximate results. It is the purpose of this work to study the Baxter-Wu model
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for the spin-1 case by using Monte Carlo simulations, where the variables s; take now the values

s; = —1,0,1, and the Hamiltonian can be written as
H=-J Z 5i5jSk + AZsiz, (2)
<ijk> i

where A is the crystal field interaction. This model has been treated by conformal invariance,
finite-size scaling and mean-field renormalization group approaches, [8] and Monte Carlo
simulations at zero crystal field [9]. It has been shown that the system belongs to a different
universality class with exponents that depend on the value of A.

In this sense, we apply the histogram techniques together with the Metropolis simulation
algorithm in order to investigate the thermal behavior of the spin-1 Baxter-Wu model defined by
Eq. (2) by considering the specific heat, order parameter, and magnetic susceptibility. Our main
interest is to obtain, through a finite-size scaling analysis, the phase transition temperature as
well as the critical exponents of the model for some values of the reduced crystal field D = A/ J,
namely D = —1 and D = +1.

2. Simulation background
The simulations have been carried out by employing the single-spin-flip Metropolis algorithm
[10, 11]. In the course of the simulations we considered triangular lattices with linear
dimensions L x L and fully periodic boundary conditions for system sizes of length L =
21, 48, 60, 90, 108, 156, 210. Due to the fact that the system has, in addition to the
ferromagnetic phase (with all spins up), three different ferrimagnetic phases with three different
sublattices (one sublattice with spins up, and spins down on the other two sublattices), the
allowed values of L must be always a multiple of 3. In this way, all ground states of the infinite
lattice would fit on any finite lattice. Following equilibration runs comprising up to 108 MCS
(Monte Carlo steps per spin) were performed (each equilibration comprised 3 x 105 MCS).
Histogram reweighting [12, 13] and finite-size scaling (FSS) techniques were used to precisely
locate the second-order phase transition. Regarding the histograms, great care has been taken
in order to assure the reliability of the extrapolated results for all lattice sizes.

The thermodynamic quantities that have been measured in our simulations are the order
parameter, defined as the root mean square average of the magnetization of the three sublattices

3)

\/mA2 +m32 —l—m02
m = 3 s

where m 4, mp, and m¢ are the magnetizations of the different sublattices, the order parameter
susceptibility defined as

x = BL2 ((m?) = (m)*) . (4)

where 8 = 1/kpT (where (...) means an average over the generated Monte Carlo configurations),
and the specific heat

C=pFL7 ((B) —(B)7) . (5)

where (F) is the mean value of the energy.
In the case of a second-order phase transition, we then expect, for large system sizes, an
asymptotic FSS behavior of the form

C = Creg(T) + L fo(x) [1 + Ac(z) L], (6)

X = Xreg(T) + L7 f (@) [1+ Ay () L], (7)
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g = Lyl [+ @)L, ®)

where Cyeq(T') and Xyeq(T) are regular temperature dependent background terms, v, o, and « are
the usual critical exponents, and f;(x), with i = C, x, p, are FSS functions with z = (T—TC)LI/”
being the scaling variable. The second term in the brackets approximate all the corrections to
scaling by a single term, where w is the leading correction-to-scaling exponent and A;(x) are
non-universal functions (see, for instance, reference [14]). One should still emphasize that Eq.
(6) is valid for « > 0 only. Eq. (8) gives the maximum value of temperature derivative of
logarithm of the mean value of the p power of the order parameter.

3. Results

In the limit D = A/J — —oo one recovers the spin-1/2 model and we have the results
kpT./J = 2.269185..., 1/v = 1.5, a/v = 1, and v/v = 1.75. So, let us start discussing the
case D = —1. Independent evaluation of the critical exponent v, as obtained from Eq. (8),

without any consideration of the critical temperature T, is shown in Fig. 1 for the maximum
derivative of the logarithm of m and m? (although other powers of m can also be used).
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Figure 1. Logarithm of the maximum values of the derivatives of In(m) and In{m?) as a
function of the logarithm of the size L for D = —1. The dashed lines are linear fits and the full
lines are fits taken into account corrections to scaling. The errors are smaller than the symbol
sizes.

The logarithms of the maximum values of the order parameter susceptibility and specific
heat, as functions of the logarithm of L, are shown in Figs. 2 and 3, respectively.

From Figs. 1-3 one can see that for this value of the crystal field there is a slight deviation
from the critical exponents of the spin-1/2 model. The results are still almost the same whether
we take into account corrections to scaling or not. In most of the figures one cannot distinguish
the linear fit from the one taking the corrections to scaling. We also note that there is not a
strong dependence of the final fittings on the correction-to-scaling exponent, and in general the
correction-to-scaling exponent remains close to the expected value of the spin-1/2 case, which
is w = 2. The values of the critical exponents are, however, still closer to the expected results
at the limit D — —oc.
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Figure 2. Logarithm of the maximum values of the order parameter susceptibility y as a
function of the logarithm of L for D = —1. The dashed line is a linear fit and the full line is a
fit taken into account corrections to scaling. The errors are smaller than the symbol sizes.
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Figure 3. The same as Fig. 2 for the logarithm of the maximum values of the specific heat.

Having v been determined quite accurately, we can proceed to estimate the position of T,.. As
is well known, the location of the maxima of the various thermodynamic derivatives, namely the
maximum of the specific heat, susceptibility, and the derivatives of In (m) and In <m2>, provide
estimates for the transition temperature itself. As the critical exponents have similar values by
either considering or not corrections to scaling, in order to estimate the critical temperature we
can use the simpler finite-size scaling relation

T, =T, + ALY | 9)
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where ) is a constant, T, is the critical temperature of the infinite system, and 77, is the effective
transition temperature for the lattice of linear size L. A plot of these estimates is given in Fig.
4 for the four largest lattices we have studied and v obtained from Fig. 1 by taking into account
corrections to scaling. We can note that the critical temperature from the different quantities
are indeed quite close to each other.
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Figure 4. Size dependence of the effective critical temperatures (in units of J/kp) estimated
from several thermodynamic quantities. The lines are fits to Eq. (9) with v obtained from Fig.
1 with corrections to scaling. The errors are smaller than the symbol sizes.

Now, Figs. 5, 6, and 7 show the corresponding results for the critical exponents for the case
D = +1. One can see that the same behavior regarding the corrections to scaling is happening
in this case, however, the critical exponents are now farther from the corresponding ones of the
spin-1/2 model. Fig. 8 depicts the critical temperature obtained from several quantities for
D = +1 and the four largest lattices considered.

Table 1. Estimated critical exponents and critical temperatures for different values of the
crystal field. The results for D = 0 are from reference [9] and the exact ones for D — —oo from
reference [2]

D 1/v ~v/v afv T.

-00 1.5 1.75 1 2.269185..
1 153(2)  L771(9) 1.036(5) 1.85022(4)
0 1.621(5) 1.83(3) 1.12(1) 1.6607(3)
1 1.864(8) 1.951(5) 1.53(2) 1.35966(3)

4. Conclusions

It is clear, from the quality of the above results, that a well defined second order phase transition
takes place in the model with critical exponents which are indeed different from the spin-1/2
case. This means that this three-spin interaction model has exponents which depend not only
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Figure 5. The same as Fig. 1 for D = 1.
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Figure 6. The same as Fig. 2 for D = 1.

on the spin value, but also on the crystal field. Table 1 shows the results for the present case in
comparison to the values of the spin-1/2 model.

From the present results we then expect a second-order transition line whose critical
temperature decreases as the crystal field increases, with varying critical exponents. This is
indeed in contrast with the conjecture that the spin-1 Baxter-Wu model is critical only in the
limit D — —oo [15]. Moreover, the present results are in agreement with the picture of a line of
second-order phase transition with varying critical exponents and the presence of a multicritical
point, as has already been obtained from conformal invariance with finite-size scaling theory
and the mean-field renormalization group approach [8]. Work in the direction of getting the
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Figure 7. The same as Fig. 3 for D = 1.
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Figure 8. The same as Fig. 4 for D = 1.

multicritical point using Monte Carlo simulations is now in progress.
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