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Abstract. We study intersite electron correlations in the half-filled Hubbard model on square
lattices with periodic and open boundary conditions by means of a real-space dual fermion
approach. By calculating renormalization factors, we clarify that nearest-neighbor intersite
correlations already significantly reduce the critical interaction. The Mott transition occurs at
U/t ∼ 6.4, where U is the interaction strength and t is the hopping integral. This value is
consistent with quantum Monte Carlo results. It shows the importance of short-range intersite
correlations, which are taken into account in the framework of the real-space dual fermion
approach.

1. Introduction
The successful development of dynamical mean field theory (DMFT) [1] enables us to investigate
a wide range of heavy fermion systems. In its real-space formulation (RDMFT), it has
successfully been applied to inhomogeneous systems such as quasiperiodic systems [2, 3, 4],
fermionic cold atoms [5, 6, 7, 8], electron systems on surfaces [9], interfaces [10, 11] and
topological insulating systems [12]. However, this method does not take into account intersite
correlation effects, which should be important at very low temperatures. Spatial correlations
in homogeneous systems have therefore been treated by means of extensions of DMFT, e.g.,
cellular DMFT (CDMFT) [13], dynamical cluster approximation (DCA) [14], or diagrammatic
extensions of DMFT [15, 16, 17, 18, 19]. Even though a generalization of CDMFT to
inhomogeneous systems exists (the so-called I-CDMFT [20]), it is in general not clear how to
treat inhomogeneous systems by means of CDMFT or DCA, due to the absence of translational
symmetry. Diagrammatic extensions of DMFT, however, are naturally well suited to treat such
systems [21]. Here we present a real-space formulation of the dual fermion approach (RDF),
which includes spatial correlations beyond RDMFT. It allows us to study intersite electron
correlations in inhomogeneous lattices. To clarify how intersite electron correlations affect Mott
physics, we study the Hubbard model on square lattices with periodic and open boundary
conditions. By calculating renormalization factors, we discuss intersite correlations for the Mott
transitions in these systems.

This paper is organized as follows. In Sec. 2, we introduce the model Hamiltonian. In Sec. 3,
we explain our theoretical approach. We discuss how the intersite electron correlations affect
the Mott transition point in Sec. 4. A brief summary is given in Sec. 5.

TMU International Symposium 2015 IOP Publishing
Journal of Physics: Conference Series 683 (2016) 012040 doi:10.1088/1742-6596/683/1/012040

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



2. Model
We consider the single-band Hubbard model on the square lattice [22], which is given by the
following Hamiltonian

H = −t
∑
⟨i,j⟩

(c†iσcjσ + h.c.) + U
∑
i

ni↑ni↓, (1)

where the summation is over nearest-neighbors ⟨i, j⟩, c†iσ(ciσ) is a creation (annihilation) operator

of an electron at the ith site with spin σ(=↑, ↓) and niσ = c†iσciσ. t is the transfer integral between
sites and U is the Coulomb interaction. We discuss Mott transitions in the half-filled system at
finite temperatures, setting the chemical potential to µ = U/2.

3. Method
In this paper, we use the dual fermion approach, which has been developed recently [15, 17,
18, 19]. In the method, auxiliary fermions, so-called dual fermions (f, f∗) are introduced
via a Hubbard-Stratonovich transformation, and intersite correlations are treated by means
of diagrammatic expansions. The diagrammatic expansion is formalized by the dual propagator
[Ĝd

ωσ]ij = −⟨fiωσf∗
jωσ⟩ , where ω denotes fermionic Matsubara frequency iωn = (2n+ 1)π/β.

Since the dual fermion approach has originally been formulated in momentum space,
inhomogeneous systems cannot be treated in this framework. Therefore, we introduce the real-
space formulation of this method. We note that it is equivalent to the conventional dual fermion
approach for the regular lattice if the same diagrams are taken into account. All the assumptions
made in its derivation are the same as in the conventional dual fermion approach. We therefore
only give an outline of the derivation and highlight the differences to the conventional dual
fermion approach. For details of the derivation, we refer the interested reader to the above
references for further details.

In the real-space formulation, the concerned system quantities are represented as N × N
matrices (denoted by a “hat”), where N is the total number of sites. For example, the

system’s bare dual Green’s function is denoted [Ĝd,0
syst]ω = −ĝω[ĝω + (∆̂ω − t̂)−1]−1ĝω, where

∆̂ω denotes the hybridization function, ĝω is the impurity Green’s function and [t̂]ij = tδ⟨i,j⟩.
Correlations between any two sites are straightforwardly included through the corresponding
diagram connecting these two sites. By considering first-order and second-order diagrams (see

Fig. 1), the dual self-energy Σ̂d
ω can be written

Σ̂d
ij,ω = Σ̂

d(1)
i,ω δij + Σ̂

d(2)
ij,ω , (2)

where

[Σ̂d,(1)σ
ν ]ii = −T

∑
ν′
∑

σ′ γσσ
′ i

νν′,ω=0[Ĝ
dσ′
ν′ ]ii (3)

and

[Σ̂d,(2)σ
ν ]ij = −1

2T
2 ∑

ν′
∑

ω

∑
σ′ γσ

′σ i
ν′νω [Ĝ

dσ
ν+ω]ij [Ĝ

dσ′
ν′+ω]ji[Ĝ

dσ′
ν′ ]ijγ

σσ′ j
νν′ω

−1
2T

2 ∑
ν′
∑

ω γσ̄σσσ̄ i
ν′νω [Ĝd σ̄

ν+ω]ij [Ĝ
d σ̄
ν′+ω]ji[Ĝ

dσ
ν′ ]ijγ

σ̄σσσ̄ j
νν′ω . (4)

 = +Σd

Figure 1. Diagrams for the dual self-energy up to second-order.
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Here, we use shorthand notation for the vertex function

γσσ
′ i

ν′νω ≡ γσσσ
′σ′ i

ν′νω . (5)

We note that in the paper, we only consider intersite correlations between nearest neighbor

sites (Σ̂
d(2)
ij ∼ Σ̂

d(2)
i,j δ⟨i,j⟩), which we expect to be dominant (correlations of larger distances are

straightforwardly included). Therefore, our method does not reduce to the conventional dual
fermion approach even in the homogeneous system. Nevertheless, we can discuss the effect of
intersite correlations beyond DMFT. The system’s self-energy is given as

Σ̂syst = Σ̂i
imp + [(1̂ + Σ̂dĝimp)

−1Σ̂d]. (6)

The self-consistency condition for the real-space dual fermion approach is the same as that in
the conventional dual fermion approach,

Ĝd
ii = 0. (7)

Since the off-diagonal component of the dual self-energy Σ̂d originates from the vertex function,
the real-space dual fermion approach reduces to RDMFT in the weak coupling limit, or when
no diagrammatic corrections are taken into account. In these cases, the system self-energy is
diagonal and the dual self-energy is equal to zero.

In order to discuss Mott transitions at finite temperatures, we calculate the following
quantities,

zi =
[
1− ImΣ̂ii

syst(iω0)/ω0

]−1
. (8)

They can be regarded as renormalization factors at finite temperature. In the following, we
use the transfer integral t as the unit of energy. We treat the two-dimensional square lattice
with 4 × 4 sites with periodic and open boundary conditions to discuss the effect of intersite
correlations.

4. Results
We consider electron correlations in the system with periodic boundary condition (see Fig.
2(a)). To clarify how intersite correlations are taken into account in the real-space dual fermion
approach, we calculate the local Green’s function at U = 4.0. For comparison, we also show
results obtained by RDMFT and the conventional dual fermion approach in Fig. 2(b). These
three results are in good agreement with each other in the intermediate energy region and show
the same high-energy asymptotic behavior. On the other hand, they deviate in the low energy
region. We find that our results are located between those obtained by RDMFT and dual
fermion methods. This is because our real-space dual fermion method takes into account some
(i.e., those between nearest neighbor sites) but not all intersite correlations beyond the simple
RDMFT. These correlations lower the spectral weight at the Fermi level. The real-space dual
fermion result must approach the conventional dual fermion result when considering longer-range
correlations. This is currently under consideration. We note that even though the effect of the
intersite correlations on the Green’s function is small at these parameters, we will see below that
their effect can be significant.

Figure 3 shows the interaction dependence of renormalization factors in the system with
periodic boundary conditions. In the noninteracting case U = 0, the normal metallic state
is realized with zi = 1. By introducing the interaction, the renormalization factor at each
site monotonically decreases, similarly as in the conventional Hubbard model [23]. The small
difference in the low-energy region in local Green’s function obtained by RDMFT and real-
space dual fermion approach, which is discussed already, leads to the small supression in
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Figure 2. (a) Square lattice with periodic boundary condition.
(b)The imaginary part of the local Green’s function Gloc(iωn) for U = 4.0 at T = 0.1 obtained
by RDMFT, real-space dual fermion approach and dual fermion approach. The unit of energy
is set to be t.

renormalization factors for real-space dual fermion approach compared to RDMFT at U = 4.0.
At last, the first-order phase transition occurs to the Mott insulating state at Uperiodic

c . The
critical interaction Uc is deduced as Uperiodic

c = 9.4 (RDMFT) and 6.4 (real-space dual fermion
approach). In the homogeneous system, the transition point Uperiodic

c ∼ 6.5 has been obtained
precisely by the dual fermion approach [19], Uperiodic

c = 6.5 by DCA [24] and Uperiodic
c ∼ 6 by

CDMFT [25] and QMC simulation [26]. Since the dominant correlations are between nearest-
neighbors, finite size effects are expected to be small. We conclude that the real-space dual
fermion approach properly takes intersite correlations into account and gives us an improved
picture of the Mott transition.

Next, we apply the approach to the Hubbard model with open boundary conditions (see
Fig. 4(a)) as an example of inhomogeneous lattices. In this system with 4 × 4 sites, there
exist three independent sites: the corner, edge, and bulk, as shown in Fig. 4(a). Figure
4(b) shows the interaction dependence of renormalization factors for these sites. It is found
that these quantities are split into three lines in an interacting case. This fact indicates that
a site-dependent renormalization appears. On the other hand, the Mott “transition” occurs
simultaneously for all sites. Due to the open boundary conditions the critical value is lower and
the transition point is deduced as Uopen

c = 8.6 (RDMFT; not shown) and 5.6 (real-space dual
fermion approach), where the renormalization factors have jump singularities. By comparing
with the RDMFT results, we find a suppression of renormalization factors, which is similar to
the homogeneous system. Therefore, we conclude that real-space dual fermion approach can
take intersite correlations into account correctly even in inhomogeneous systems.

5. Summary
In summary, we have investigated the half-filled Hubbard model on square lattices with periodic
and open boundary conditions by means of a real-space dual fermion (RDF) approach. By
calculating the local Green’s function, we have studied how nonlocal correlations affect the local
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Figure 3. Renormalization factors in the system with periodic boundary condition obtained
by means of the real-space dual fermion and RDMFT when T = 0.1. The unit of energy is set
to be t.
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Figure 4. (a)Square lattice with open boundary condition. Three independent sites are depicted
in different gray scales.
(b)Renormalization factors in the system with open boundary condition obtained by means of
the real-space dual fermion when T = 0.1. The unit of energy is set to be t.

quantities. Moreover, we have discussed the Mott transition in this system to clarify that the
real-space dual fermion approach successfully captures the suppression of the renormalization
factor. This leads to a Mott transition point with a relatively low critical Coulomb interaction
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compared to RDMFT. The Mott transition point is close to that obtained by means of the
quantum Monte Carlo method in the homogeneous system. Therefore, we can say that our
real-space dual fermion method therefore takes intersite correlations properly into account, and
the nearest-neighbor correlations are dominant in the system. This new method allows to
study intersite electron correlation effects in various other inhomogeneous systems, such as cold
atoms in a trapping potential, nanosystems, impurities in metal hosts, interfaces and surfaces,
topological insulators and quasiperiodic lattices, which is now under consideration.
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[26] Vekić M and White S R 1993 Phys. Rev. B 47(2) 1160–1163
[27] Bauer B, Carr L D, Evertz H G, Feiguin A, Freire J, Fuchs S, Gamper L, Gukelberger J, Gull E, Guertler S,

Hehn A, Igarashi R, Isakov S V, Koop D, Ma P N, Mates P, Matsuo H, Parcollet O, Paw lowski G, Picon
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