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Abstract. With this paper we describe several alternative approaches aimed at polymer-on-
polymer coatings, produced by Plasma Enhanced Chemical Vapour Deposition (PECVD) 
technique. In our case three types of input compounds were applied for varied “cold plasma” 
PECVD deposition of nano-thick functional layers: namely hexamethyldisiloxane (HMDSO), 
pentane and toluene onto plastic substrates. The output characterisations through SEM 
imaging, ATR-FTIR, EDX, AFM and contact angle measurements, proved the methods’ 
feasibility and properties of the plasma-polymerised coatings. 

1.  Introduction 
During the last three decades applications of Chemical Vapour Deposition (CVD) and Plasma 
Enhanced Chemical Vapour Deposition (PECVD) technologies show constant growth in various fields 
of scientific research, followed by technology and medicine [1-3]. In particular PECVD is an 
outstanding alternative for depositing a range of thin films at lower temperatures than those applied in 
CVD reactors; this often without settling for a lesser coating quality. The application of “cold plasma” 
PECVD equipment provides an excellent opportunity to etch, modify and coat thermally sensitive 
substrates, including porous and nanostructured plastics. In the same time plasma-assisted 
polymerisation renders possible an utilisation of “non-conventional” organic monomers for highly 
branched and cross-linked thermoset films having pronounced resistance towards solvents and strong 
adhesion to the substrate. The creation of composite materials, or layers, provides the researchers with 
an ability to combine the desirable properties of each of the materials involved in the layered 
composite. The versatility of plasma polymer depositions in aspects of production of insoluble and 
infusible films, electrically conductive polymers, controllably crosslinked networks and their potential 
to reduce environmental, health, and safety issues associated with solvents are well described [4]. 

Plasma-enhanced CVD depositions onto porous and soft plastic materials are of particular interest 
not only due to wide area of polymer applications in medicine, separation science and industry. They 
also attract attention because of the “coating challenge” related to the thermally sensitive and 
susceptible to stress damage flexible substrates. Deposition of SiOx thin films on 
polyethyleneterephtalate (PET) as a barrier anti-oxygen coating for packaging industry was researched 
by [5]; precursor combination of oxygen-diluted hexamethyldisiloxane (HMDSO) was used with 
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varied concentration in MW and RF plasmas. Along with plasma-deposition of HMDSO onto Si 
wafers, substrates of polylactic acid films were used by [6]. In [7] a common mechanism of plasma 
polymerization of aromatic compounds is proposed, with conclusions based on PECVD of 
benzaldehyde, benzyl alcohol, styrene, and benzyl chloride. [8-9] studied the plasma polymerization of 
toluene, on inorganic copper and silicon substrates though. Hydrogenated carbon films deposited by 
PECVD of methane are described in [10]. PECVD of hexane aliphatic hydrocarbon onto PET was 
researched by [11], in parallel with HMDSO-based coatings. 

With present work we demonstrate a practical application of PECVD method, aimed at “cold 
plasma” depositions on sheets of porous thermo-sensitive polymers and their characterisation. The 
scopes of this paper are especially the surface coatings and their properties. Substrates here will be 
denoted as S1÷S3 due to related ongoing work; their properties will be topic of following distinct 
article. 

 
2.  Experimental part 

2.1.  Materials 
All reagents used were of analytical grade quality: hexamethyldisiloxane (Merck-Schuchardt, 
Germany), pentane (Fluka AG, Buchs, Switzerland), toluene (Valerus Ltd, Bulgaria). Distilled water 
(GFL Typ 2004, Burgwedel, Germany) was used throughout this work where necessary. 

2.2.  PECVD coatings 
Coatings were deposited using RF plasma chamber of type B 30.2,VEB Hochvakuum Dresden, 
Germany). 

Polymer samples were placed horizontally onto an intermediate fluoropolymer plate, between the 
two working electrodes layered with aluminium foil (figure 1). The vapour pressure of the used 
precursors was high enough to ensure introduction without carrier gas. The depositions occurred 
within 85-100 Pa working pressure, with RF powers of several watts depending of the plasma 
stability. The thicknesses of the coatings were simultaneously compared by those derived with quartz 
resonator frequency changes [12], and visually, trough SEM images of corresponding cross sections. 

 

 
Figure 1. PECVD setup. 

2.3.  Instruments 
Following instrumentation was used throughout the work: 

SEM. For higher resolution images, LEO Gemini 1525 FEGSEM (Karl Zeiss), with an accelerating 
voltage of 5 kV, was used. Prior to analysis for both SEM analysis (here and EDX), samples were 
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sputter coated (Q150T S turbo-pumped sputter coater, Quorum Technologies Ltd., Ashford, UK) with 
10 nm chromium under an Ar atmosphere (0.02 mbar). 

Infrared spectra. The FTIR analysis was performed using a Spectrum 100 FT-IR Spectrometer 
fitted with Universal ATR Accessory. The scanning range was 600-4000 cm-1 and the resolution was 1 
cm-1. “Net” absorption spectra of the differences between the plasma-covered and initial plain 
polymers were collected and analysed, because of the picture of pure related changes. 

EDX. Especially for the Si-containing films, corresponding SEM-EDX elemental analysis was 
performed using a JEOL JSM 6010 LA. For EDX mapping an accelerating voltage of 20 kV was used. 

Contact angle measurements were performed with an Easy-Drop Instrument (Kruess) at room 
temperature. 2 microlitres of DI water was deposited on the surface, and analysed via the sessile drop 
method. A minimum of 6 samples from different spots were obtained for each film. 

AFM. The analyses were performed on a Multimode 8 (Bruker, USA) AFM equipped with E-type 
pizzo scanner. Samples were attached to a magnetic sample disc using carbon adhesive tabs. Scans 
were conducted using a silicon tip on nitride lever (MSNL-10, Bruker). The cantilever resonance 
frequency is in the range 90-160 kHz, with a nominal spring constant of 0.6 N/m. Nanoscope analysis 
1.5 was used to process the obtained images. 

 
3.  Results and Discussion 
Films having different surface properties and degree of hydrophobicity were developed with the 
course of our work. Depending on the different durations of each procedure not only the thicknesses 
vary, but also varied surface morphology was observed. 

3.1.  Polysiloxane plasma-deposition 
An application of pure HMDSO vapour, unlike the SiOx films from HMDSO/oxygen mixtures [13], 
outputs siloxane polymer having distinctive organic nature. As visible on figure 2, siloxane coatings 
together with the pentane-based ones display intrinsic hydrophobic nature. 

 

 
Figure 2. Contact angles for plain substrate S1 and the plasma-deposited films type H (20 min), P 

(5 min) and T (20 min deposition). Corresponding standard deviations are (from left): 7.8°; 3.7°; 3.4°; 
5.0°. 

 
PECVD deposited siloxanes show dense well defined surface layers onto the initial polymers. After 

20 minutes long deposition in average 110-120 nm thick film develops (figure 3); with parallel quartz 
resonator proof measurement of 110 nm. Some surface peculiarities show up throughout the procedure 
though. Depending on the coating time, the surface morphology of the primary layers is characteristic 
with granular surface nanostructures of varying sizes and quantities, randomly distributed throughout 
the surface of the siloxane deposit. Figure 3b clearly presents such topography after 20 minutes 
deposition time: with particles being on the surface, fallen off their nests during the SEM preparations, 
and some partially immersed into the layer. After total of 40 minutes PECVD treatment however the 
final layer displays smoother look, with less but rounded granular structures. Besides of these 
heterostructures, AFM reveals rather smooth siloxane surface: with unevenness of the plain S1 
substrate within 0-15.1 nm (area 1x1 μ), coated for 20 min specimens vary within 0-12 nm (1x1 μ), 0-
18.2 nm (2x2 μ; 0.6 N/m cantilever) and 0-17.6 nm (2x2 μ; 4.0 N/m cantilever). 
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Figure 3. Plain polymer substrate S1 (left), and plasma coated (HMDSO 20 and 40 min; right). 

Magnification 5.00 and 50.00k. 
 
Previous researches connect the topographic nature of the siloxane plasma films with the type of 

the precursor: HMDSO/O2 mixture (rough) and HMDSO (even) [13-14]. Our results partially verify 
this conclusion; averaged EDX of 20 and 40 minutes-long deposited coatings reveals an increase of Si 
and O content with the time (Table 1). However, SEM-EDX mapping testifies about enhanced further 
presence of these two elements at the places of granular structures; according to this a mixed-mode 
mechanism of the depositions could be proposed here. Most probably, the nanogranules of interest 
(rather inorganic SiOx/SiOCH-type) firstly develop into the working volume of PECVD instrument, 
and subsequently fall onto the organic siloxane film, becoming further partially dissolved and 
immersed. It is still to be researched where the oxygen arises in the deposition process; with possible 
sources: adsorbed onto the porous substrate, or through specific plasma decomposition.  

Table 1. EDX content of the siloxane coated vs. plain surface 

 Material 
 Plain S1 HMDSO 20’ HMDSO 40’ 
Element Mass % At % SD Mass % At % SD Mass % At % SD 
C 89.2 91.67 0.01 79.64 84.24 0.01 59.61 67.54 0.01 
O 10.8 8.33 0.03 19.15 15.21 0.04 35.23 29.96 0.04 
Si - - - 1.21 0.55 0.01 5.16 2.5 0.01 

 

 
Figure 4. EDX-mapping of Si and O content for the surface of 40’ siloxane coating. 

 
In order to investigate the composition of the surface plasma polymers, Fourier transform infrared 

spectroscopy was applied. Several typical for the siloxanes adsorptions are distinctively pronounced 
here (Figure 5): Si-O-Si asymmetric stretching vibration mode around 1035 cm−1 and bending 
vibration around 800 cm−1; strong peaks of methyl groups (Si-(CH3)3 rocking vibration) at about 845 
cm−1 and symmetric bending at 1265 cm−1; surface Si-OH groups situated around 3300 cm−1 for some 
of the coatings [13, 15-16]. 

The characteristic absorption bands between 2847 and 2960 correspond to the asymmetric and 
symmetric stretching CHx vibration (all sp3-hybridized CH3 and CH2). All in all, we observe the pique 
at around 1687-1735 cm−1 to appear and rise simultaneously with the –OH vibration at around 3300 
cm−1, so we associate this quite strong for some coatings feature with bending mode δ(OH) of surface 
hydroxyl groups. The intensity of Si-related absorptions generally increases with the enhancement of 
Si content of the coatings, which is not necessarily connected with the higher thickness of the layer, 
but also with the degree of “inorganication” and the presence of SiOx/SiOCH-inclusions. 
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Figure 5. ATR-FTIR “net” spectra of siloxane coatings on substrates S1÷S3. 

3.2.  Pentane and Toluene plasma depositions 
Aliphatic and aromatic hydrocarbons were also applied as plasma polymer-forming precursors, under 
conditions that we used for siloxane coatings. Figure 6 clearly displays the most prominent change 
following the plasma deposition of these types: namely enhancement of the peaks related to 
hydrocarbon groups, and especially the CHx stretches around 2800-3000 cm−1. These alterations are 
pronounced after short 5 min long PECVD treatment; longer coating times make them far stronger 
(Figure 6-upper). Looking at the pentane coating’s FTIR spectra for substrate S1 (Figure 6-lower, top), 
we see it as a sole indicator of the surface change. 

A comparison between the spectra of pentane and toluene coatings on S2 substrate reveals strong 
similarity (Figure 6-lower). Most likely this can be evidence for decomposition of aromatic 
hydrocarbons in PECVD plasma conditions, where the deposition of plain hydrocarbon chains and 
fragments occurred by the “pentane mechanism”. Similar conclusions have been also drawn by other 
authors [7-8]. 
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Figure 6. ATR-FTIR “net” spectra of pentane and toluene coatings on substrates S1÷S3. 

 
Corresponding SEM images for pentane coatings show homogenous surface with no inclusions, 

although having more “rugged” appearance (Figure 7). Toluene-derived layers, similar to the pentane 
ones, demonstrate looser structure unlike the siloxanes, and sharp well defined interface can not be 
observed at the cross sections. 

 

 
Figure 7. Plain polymer substrate S2 (left), and plasma coated (Pentane 5 and 20 min; right). The 

thicknesses of the coatings are 12 and 85 nm (quartz resonator). Magnification 100.00k. 
 

4.  Conclusions 
With this work we studied the deposition and properties of three types of PECVD polymerised films, 
under different duration conditions. Low-temperature plasma processes rendered possible the 
application of three porous thermo-sensitive substrates. Surface coatings of siloxane type are dense 
and well differentiable on SEM microscopy images; they exhibit dual-mode mechanism of the 
deposition combined with possible hetero-inclusions within the layers. In addition, siloxane FTIR 
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characterisations are substrate-dependent, which must be taken into account when analyzing. On the 
contrary, films derived by aliphatic hydrocarbons are rather loose, but uniform polymer deposits, as 
found also by [10] for methane. Although having some specifics, toluene-based films show close 
proximity with the pentane-derived ones. 
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