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Abstract. Paper is devoted constructing efficient metaheuristics algorithms for discrete 
optimization problems. Particularly, we consider vehicle routing problem applying original ant 
colony optimization method to solve it. Besides, some parts of algorithm are separated for 
parallel computing. Some experimental results are performed to compare the efficiency of 
these methods.  

1. Introduction
Optimization algorithms are known to be useful in many types of problems in mathematics, physics, 
chemistry, biology, statistics and so on. Particularly, many physical systems are governed by 
minimization principles. For example, in thermodynamics, a system coupled to a heat bath always 
takes the state with minimal free energy. Besides, some other applications are well known: 
determination of the self affine properties of polymers in random media, solution of the protein folding 
problem, analysis of X-ray data, optimization of lasers and optical fibers, etc. [1]. 

In general discrete optimization is a branch of mathematical programming, which includes the 
extremal problems with variables defined on discrete sets. Almost all discrete optimization problems 
have application in practice. A large number of discrete optimization problems in one form or another 
can be reduced to a vehicle routing problem. Therefore, the algorithms and principles for solving 
vehicle routing problems are widely used for solving other discrete optimization problems. 

Consider vehicle routing problem with capacity constraints (CVRP). Given a graph G = (V, A, d), 
where V ={  v0, v1,..,vn} is the set of vertices (v0 is a depot and other vertices are clients). A is a set of 
edges connecting vertices of the graph G. For each arc (i,j) a non-negative distance dij between clients 
vi and vj is given . Positive demand ci is set for client i, capacity of each of the m vehicles is bounded 
by Ck  (k=1,...,m). Also the following restrictions are given: 

• each client should be visited exactly once;
• the depot is the start and the end point of all the routes.

The aim of the task is the construction of route with minimal total distance which satisfies the 
demands of all customers and does not violate the restrictions described above. 

In section 2 mathematical setting of CVRP is performed. Section 3 is devoted to the original 
modification of ant colony optimization algorithm for CVRP. The algorithm parallelization scheme 
and some computational results of its application to the model tasks are presented in section 4. Finally, 
in section 5 these results are discussed. 
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The mathematical formalization of CVRP is the following: to minimize the objective function 
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k
ijX  equals 1 if the vehicle k follows the customer i to customer j, and 0 otherwise. 

The objective function (1) defines the total distance value passed by all vehicles. Conditions (2)–(9) 
specify the problem constraints and are discussed by many authors (see, for example, [2]). 

CVRP is NP-hard problem, so only metaheuristics are suitable to solve it for practical applications. 
In the next section we consider an effective optimization algorithm based on the modification of ant 
colony method. 

3. Modified ant colony optimization method
Ant colony optimization (ACO) is a swarm intelligence method for solving different hard discrete 
optimization problems. The approach is to use the model of food searching in colonies of ants that 
mark the path by a special chemical substance called pheromone. Left traces attract other ants, which, 
passing along marked paths, in turn enhances the smell of the pheromone. Over the time pheromone 
evaporates, so the ants could adapt their behavior to the external environment changes. Classical ACO 
for CVRP could be found in papers [2, 3]. 

Here we consider the following modification of ACO for CVRP. Initially, each vehicle k starts 
from the depot, and the set Mk of customers, included in its route, is empty. The next customer j to 
visit is chosen by the probabilistic criterion: 
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2. Mathematical setting
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where i is the current client (or depot on the first step); iuτ  is pheromone amount on the route between 
clients i and u; β  is the parameter establishing the importance of distance in comparison to 

pheromone quantity; 0p  is the parameter. S is a discrete random variable with probability 

distribution ( , )kp i j , where ( , )kp i j  is the probability for the vehicle k to move from client i to client j. 
First part of formula (10) we call the “determined rule” for client choosing and the second – 
“stochastic rule”. On the first step (iteration) 
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and on the next steps is proposed to remember the total distances of best and worst routes of one 
vehicle (L and R, respectively). In the case, when moving from customer i to customer j is contained in 
the worst route, then the probability  
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and in other cases 
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Route for vehicle is completed when its load capacity is over or all clients are visited, then vehicle 
returns to the depot. Thus routes for all vehicles are consecutively constructed. 

In order to improve future solutions, the pheromone trails should be updated to reflect the quality 
of the solutions found. Local pheromone update models its natural evaporation and ensures that no 
route becomes too prevalent. This update is made after route for current vehicle is done: 

0(1 )new old
ij ijτ α τ ατ= − + , (14) 

where α  is a parameter that controls the speed of evaporation, and 0τ  is the initial pheromone value. 
We propose to calculate the initial pheromone value as follows: 
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Global trail updating is performed by adding pheromone to all of the arcs included in the best route 
of one vehicle and encourages the use of shorter routes in future solutions: 

(1 )new old
ij ij L

ατ α τ= − + . (16) 

This process is repeated until the stopping criterion occurs. The best solution over all iterations is a 
‘good’ approximation of the optimal objective function value. 

The efficiency of this modified ACO algorithm was studied and discussed in [2]. 

4. Algorithm parallelization
In order to reduce the ACO execution time we divided some parts of algorithm into several parallel 
processes for calculation. On the block diagram presented on the Figure 1 these parts are highlighted 
by dashed lines. 
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Figure 1. Block diagram of ACO algorithm with parallelization. 

The modified ACO algorithms with and without parallel sections were implemented in C++ as 
dynamic shared object library. The library was written using the precise calculations library GNU 
Multi-Precision. Therefore, it becomes possible to reduce computing inaccuracies to a minimum 
without the computation time increasing. 

As tools of parallel programming we used OpenMP and BoostThread. While the main advantage of 
OpenMP is in easy way of development and using, the main lack is in the absence of general support 
for working with arbitrary containers and custom data types. BoostThread is part of libraries designed 
specifically for the C++ language and provides opportunities for threads creation, management and 
synchronization. However, from the practical implementation side BoostThread has more complicated 
structure compared with OpenMP and is more complex in general.  

Table 1 presents the solution results of CVRP by proposed modified ACO algorithm without the 
use of parallel computing and using the proposed scheme of parallelization. The experiments were 
conducted on the set of model tasks (benchmarks) from [4] with dimensions (number of clients) from 
22 to 101. The table shows the solution time (in seconds) for some tasks using both methods. 
Improvements are presented both in absolute values (seconds) and relative values (percentage). The 
least relative improvement was obtained for the problem with 51 clients and amounted to 4.4%. The 
best result was obtained for the task with 101 clients, which gives relative improvement in 13.7%. 
Uneven improvements can be justified by the stochastic nature of the considered algorithm. 

Table 1. Efficiency of parallel calculations in modified ACO algorithm. 

Client 
amount 

Execution time 
without parallel 

calculations, seconds 

Execution time with 
parallel calculations, 

seconds 

Absolute 
improvement, 

seconds 

Relative 
improvement, 

% 
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22 5.4 5 0.4 7.4 

30 20.4 19 1.4 6.9 

51 118.6 113.4 5.2 4.4 

76 337 317.8 19.2 5.7 

101 770 664.6 105.4 13.7 

5. Discussion and conclusions
First of all, note that the research results described in this paper are used for developing Transportation 
Management System for Russian Oil Company "Rosneft". After implementation of proposed 
algorithms the efficiency of transport logistics increased by 10% and decision making time for vehicle 
routing decreased by 20%. 

When we begin to carry out computational experiments with parallel calculations of the algorithm 
we expected to get better time reducing results, but didn’t reach the major improvement in execution 
time. Analyzing the reasons of such minor enhancement in time we can made the following 
conclusions.  

The main shortcoming of an implementation of parallel calculations into ACO algorithm is the 
following. The biggest gain in time can be obtained by paralleling directly the process of the route 
building for each vehicle, i.e. while client choosing by determined and stochastic rules. But the arising 
problem is that the set of available clients to choose should be the same for all parallel processes. 
Otherwise there could be cases when the same client is chosen for several routes. Thus, if we follow 
this way of parallelization, it is necessary to block the set of available clients until the current process 
finishes client selection.  

So the authors’ future plans are to develop ACO method parallelization scheme to reduce execution 
time for big dimensions tasks. 
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