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Abstract. We consider N -component synchronization models defined in terms of stochastic
particle systems with special interaction. For general (nonsymmetric) Markov models we discuss
phenomenon of the long time stochastic synchronization. We study behavior of the system in
different limit situations related to appropriate changes of variables and scalings. For N = 2
limit distributions are found explicitly.

1. Model
Synchronization models studied in the present paper are motivated by some computer science
applications (parallel computations [1], wireless sensor networks [2, 3] etc.). These models
surprisingly have a lot in common with interacting particle systems in physics. Recall the
definition of N -component stochastic synchronization system. Let xj ∈ Rd represent the state
of a component j, j = 1, N . The dynamics of the system is a continuous time stochastic process
x(t) = (x1(t), . . . , xN (t)), t ≥ 0, which evolution is composed of two parts called respectively a
free dynamics and a synchronizing interaction. The interaction between components is happened
only at some random epochs 0 = T0 < T1 < T2 < · · · and has a form of instantaneous
synchronizing jumps x(Tn) 7→ x(Tn + 0) to be precised later on. The free dynamics means that
between successive epochs of interaction the components xj(t) evolve independently. Namely
there is a family of mutually independent stochastic processes x◦j (t), j = 1, N , such that

xj(t)− xj(Tn−1 + 0) = x◦j (t)− x◦j (Tn−1 + 0), Tn−1 < t ≤ Tn, n ≥ 1, j = 1, N.

Before going into further details, let us reformulate the model in terms of particle systems.
Instead of components we will speak of N particles with coordinates xj .

To introduce a pair-wise synchronizing interaction between particles it is convenient to assume
that particles can share information about each other by sending and receiving messages.

Imagine, for example, that at time Tq the particle j
(q)
1 sends a message to some another

particle j
(q)
2 . For breavity notation let us write j1 = j

(q)
1 and j2 = j

(q)
2 . The message contains

information on the current value of xj1 . Assume that messages reach their destinations instantly.
After receiving the message from j1 the particle j2 ajusts its coordinate to the value xj1 :
xj2(Tq + 0) = xj1(Tq). This is the only jump in the system at the time Tq: xj(Tq + 0) = xj(Tq)
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for all j 6= j2. Define a (linear) map Mj1j2 :
(
Rd
)N → (

Rd
)N

such that x and y = Mj1j2x differ
only in the j2-component:

yj2 = xj1 , yk = xk, k 6= j2, x = (x1, . . . , xN ) , y = (y1, . . . , yN ) .

Thus the synchronizing jump can be expressed as x(Tq + 0) = Mj1j2 x(Tq).

The key idea of this synchronization model is that the sequence H =
{(
Tn; j

(n)
1 , j

(n)
2

)}
n≥1

should be random. Consider point processes

T j→k := {Tn : (Tn; j, k) ∈ H} , (j 6= k), T j→ :=
⋃

k
T j→k, T :=

⋃
j,k
T j→k

where, for brevity, we have put T j→j = ∅. Evidently, T is the sequence of synchronization
epochs {Tn}n≥1. For any interval [t1, t2] ⊂ R+ and any route (j1, j2) denote

νj1j2 ([t1, t2]) := card ({(Tn; j1, j2) : Tn ∈ [a, b]}) = card
(
T j1→j2 ∩ [a, b]

)
,

the random number of messages sent from j1 to j2 during the time interval [a, b]. Reasonable
assumptions covering a wide field of applications are the following.
M1) Message flows T j→ generated by different particles j are independent.
M2) The particle j sends messages to another particle k with the rate βjk ≥ 0, i.e., for any j
and t, h ≥ 0

P (νjk ([t, t+ h]) = 1) = βjkh+ o(h), k 6= j,

P
( ∑
k: k 6=j

νjk ([t, t+ h]) = 0
)

= 1− βjh+ o(h) as h→ 0 where βj :=
∑

k: k 6=j
βjk .

(If βjk = 0 then T j→k = ∅, that is, there is no message flows on the route (j, k).)

M3) For any j the message flow T j→ generated by the particle j is nonzero, i.e.,
∑

k: k 6=j
βjk > 0.

With the set of parameters {βjk, k 6= j} we associate a directed graph G with vertices 1, . . . , N
and directed arcs (j, k) such that βjk > 0.
M4) The graph G is strongly connected, i.e., any pair of vertices can be connected by a directed
path.

Assumptions M1–M2 implies that

P
(

card (T ∩ [a, b]) ≥ 2
)

= P
( ∑
j,k: k 6=j

νjk ([t, t+ h]) ≥ 2
)

= o(h) ,

P
(

card (T ∩ [a, b]) = 0
)

= 1− βh+ o(h) where β :=
∑
j
βj =

∑
j 6=k

βjk .

Put X0 = 0. A point process X = {X1, X2, . . . , Xn, . . .} ⊂ (0,+∞) is said to be a Poisson
process of rate γ > 0 if {Xn −Xn−1}n≥1 is a sequence of independent and identically distributed

exponential random variables with the mean γ−1 that is P
(
Xn − Xn−1 > s

)
= exp (−γs) for

s ≥ 0. Differences Xn −Xn−1 are called inter-event intervals. For further details the interested
reader is referred to [4].

From Assumptions M1–M3 and the classic point processes theory it follows that

• any message flow T j1→j2 is a Poisson process of rate βj1j2 ;

• the flows T j→k corresponding to different routes (j, k) are mutually independent;
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• the point processes T j→ and T = {Tn}n≥1 are Poisson with rates βj and β respectively.

So the mechanism of synchronizing interaction is very transparent: at epochs of the message
flow T j1→j2 we apply the map Mj1j2 .

Before specifying the free dynamics we fix some notation. Given a random vector Z ∈ Rd,
let PZ and ψZ denote its probability distribution and characteristic function respectively, i.e.,

PZ(A) := P (Z ∈ A) , A ⊂ Rd, ψZ(a) :=

ˆ
Rd

ei a·q PZ(dq) = E exp (i a · Z ) , a ∈ Rd,

where E is the expectation with respect to P and a · q denotes the Euclidian scalar product of
two vectors a and q in Rd. It is readily seen that the function ψZ is the Fourrier transform of
the probability measure PZ .

Recall [5, 6] that an Rd-valued stochastic process z(t), t ≥ 0, is called a Lévy process if
1) it has independent and stationary increments; 2) it is stochastically continuous; 3) z(0) = 0.
A remarkable property of Lévy processes is a representation for ψz(t),

ψz(t)(a) = ψz(s+t)−z(s)(a) = exp (tφz(a)) , t ≥ 0, s > 0,

where φz has the Lévy-Khintchine form [5]. The function φz : Rd → C is called a characteristic
exponent of the Lévy process z = z(t). It is easy to see that φz(a) is continuous, φz(0) = 0 and
Reφz(a) ≤ 0. Our main assumption about the free dynamics is the following.
F) The free dynamics x◦j (t), j = 1, N , are independent Lévy processes. For further convenience,
the characteristic exponent for the particle j will be denoted as φx◦j (a) = −ηj(a), i.e.,

E exp
(
iλj · x◦j (t)

)
= exp (−t ηj(λj)) , λj ∈ Rd.

Many interesting examples of one-particle dynamics satisfy Assumption F. In particular, if
x◦j (t) is a Brownian motion with diffusion matrix Σ and drift vector vj ∈ Rd then ηj(λj) =

−i vj · λj + 1
2 (ΣΣ>λj) · λj . Sometimes we will need stronger assumptions.

F0) Assumption F holds and the functions ηj are such that Re ηj(λj) > 0 for all λj 6= 0.
FSα) Assumption F0 holds and each x◦j (t) is an α-stable Lévy process. In other words, the

characteristic exponents −ηj(λj), j = 1, N , satisfy the following condition: there exists α ∈ (0, 2]
such that

ηj(sλj) = sαηj(λj) ∀s > 0, λj ∈ Rd. (1)

The number α is called the stability index. The classical examples of stable Lévy dynamics
are Brownian motions with zero drift (ηj(λj) = 1

2 (ΣΣ>λj) ·λj , α = 2). More information about
stable laws can be found in [7, 8].

The only assumption about initial configuration x(0) is that it is independent of the free
dynamics and all message flows T j→k.

Under above assumptions x(t) is a Markov process. Synchronization model is called
symmetric if ηj = η for all j and βjk = c/(N − 1) for all j 6= k.

2. Stochastic synchronization
It is clear from definition of x(t) that collective behavior of particle systems with synchronization
is a superposition of two tendencies. Indeed, the processes x◦j (t), j = 1, N , are mutually
independent and have independent increments. Thus, due to the free dynamics, the spread of
the particle system has the tendency to increase with the course of time. An opposite tendency is
produced by synchronizing jumps which try to decrease the spread of the particle configuration.

In order to state precise results on a long-time behavior of x(t) it is convenient to use the
concept of convergence in distribution. We don’t touch here all nuances of this notion and refer
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interested readers to [9]. We need only the following useful statement which can be found in
most probability textbooks: an Rd-valued random sequence {Zn}∞n=1 converges in distribution
to a random vectors Z iff ψZn(a)→ ψZ(a) for all a ∈ Rd.

The long time behavior of different symmetric synchronization models was studied in a series
of papers [3, 10–14]. In particular, it is known that

a) components xj(t) have no limits in distribution as t→∞,
b) any difference xj(t)− xk(t) converge in distribution to a nontrivial probability law,

c) an improved process y(t) = (y1(t), . . . , yN (t)) ∈
(
Rd
)N

such that yi(t) = xi(t)−M(t) and

M(t) := N−1
∑N

m=1 xm(t) is ergodic.
In particular, there exists a limit in distribution of y(t) as t→∞. Evidently, the process y(t)

describes the particle system x(t) viewed by an observer placed in the center of mass M(t).
In the presence of b) we say that for the system x(t) a long time stochastic synchronization

takes place. Note that statement c) is stronger than statement b).
The goal of this and subsequent papers is to obtains results similar to a)–c) for non-

symmetric synchronization models. We are interested in the joint distribution of the total

system x(t) = (x1(t), . . . xN (t)) ∈
(
Rd
)N

and, hence, in the joint characteristic function (c.f.)

χ1,2,...,N (t; λ) = E exp
(

i
∑
j

λj · xj(t)
)
, λj ∈ Rd, λ = (λ1, . . . , λN ).

It contains all information about distribution of the system and, in particular, about its
marginal distributions. For instance, ψx1(t)(λ1) = χ1,2,...,N (t; λ1, 0, . . . , 0) etc. But the function
χ1,2,...,N appears to be very complicated. Due to the synchronizing interaction the particles
x1(t), . . . xN (t) are dependent. Hence χ1,2,...,N (t; λ1, . . . , λN ) 6= ψx1(t)(λ1) · · ·ψxN (t)(λN ) for any
finite t > 0 and, as we will see later, this feature survives also in the asymptotic limit t → ∞.
Nevertheless, we will get a nice description of the long time behavior of x(t) by making an
appropriate change of variables. Consider y(t) and M(t) as defined in item c). Let ψy(t),M(t) be
their joint c.f.,

ψy(t),M(t)(u, ρ) = E exp
(

i
∑
j

uj · yj(t) + i ρ ·M(t)
)
, uj , ρ ∈ Rd, u ∈

(
Rd
)N
,

ψy(t)(u) = ψy(t),M(t)(u, 0) and ψM(t)(ρ) = ψy(t),M(t)(0, ρ) be c.f.s of y(t) and M(t). The results
on their long time behavior are summarized in next two theorems.

Theorem 1. Let Assumptions M1-M4 and F0 hold.
i) None of the vectors M(t), xj(t), j = 1, N , has a limit in distribution as t→∞.

ii) For any u ∈
(
Rd
)N

ψy(t)(u) → ψy(∞)(u) as t → ∞ where ψy(∞)(u) is a c.f. of some

probability law on
(
Rd
)N

.

Item ii implies that y(t) has a limit in distribution. Remark that
∑

j yj(t) ≡ 0, hence all

distributions Py(t) and Py(∞) are supported on the linear subspace
{
y :
∑

j yj = 0
}

.

Theorem 2. Let Assumptions M1-M4 and FSα hold. Denote m(t) := M(t)/t1/α. Then

∀u, ρ ψm(t)(ρ)→ ψm(∞)(ρ), ψy(t),m(t)(u, ρ)→ ψy(∞)(u)ψm(∞)(ρ) (t→∞)

where ψm(∞)(ρ) is a c.f. of some probability law on Rd.

This theorem implies that the joint distribution of (y(t),m(t)) = (y(t),M(t)/t1/α) has a limit
as t→∞ and, after passage to the limit, the components y and m become independent.

Below we give a detailed study of the case N = 2. For N > 2 complete proofs of
Theorems 1 and 2 demand some additional constructions which might exceed the size of the
present publication. So the case N ≥ 3 will be considered in another paper.
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3. Complete treatment for N = 2
Fix λ1, λ2 ∈ Rd and denote ε12 = η1(λ1) + η2(λ2), ε1 = η1(λ1 + λ2), ε2 = η2(λ1 + λ2),

f12(t) = χ1,2(t; λ1, λ2), f1(t) = χ1,2(t, ; λ1 + λ2, 0), f2(t) = χ1,2(t; 0, λ1 + λ2).

By using Markov property of x(t) it is straightforward to check that the functions f12, f1, f2
satisfies the following system of linear differential equations

d

dt

 f12(t)
f1(t)
f2(t)

 =

 −ε12 − β12 − β21 β12 β21
0 −ε1 − β21 β21
0 β12 −ε2 − β12

 f12(t)
f1(t)
f2(t)

 (2)

or in short notation d
dt
~f = A(ε) ~f , ε := (ε12, ε1, ε2). Hence ~f(t) = exp(tA(ε)) ~f(0) is the

solution. To study behavior of ~f(t) as t→∞ let us find an eigensystem of A(ε) : µ~v = A(ε)~v.
The simplest pair is µ1(ε) = −ε12 − β12 − β21 and ~v1(ε) = (1, 0, 0)>. The next two eigenvalues
can be found in an explicit form containing radical fuctions. After some algebra we get their
expansions as ε→ 0, namely,

µ2(ε) = −β12ε1 + β21ε2
β12 + β21

+ o(‖ε‖), µ3(ε) = −β12 − β21 + o(1). (3)

The corresponding eigenvectors ~v2(ε) and ~v3(ε) approaches as ε → 0 to the column vectors
(1, 1, 1)> and (0,−β21, β12)> respectively. It is important to remark that µ2(ε) and µ3(ε) do not
depend on ε12. Note that ε → 0 as (λ1, λ2) → 0. Denote S =

{
(λ1, λ2) ∈ R2d : λ1 + λ2 6= 0

}
.

If the pair (λ1, λ2) ∈ S is sufficiently small then all eigenvalues have strictly negative real

parts. This follows from Assumption F0. Thus ~f(t) → 0 as t → +∞ for small (λ1, λ2) ∈ S.
Since χ1,2(t; 0, 0) ≡ 1 the limit of χ1,2(t; λ1, λ2) is discontinuous at (λ1, λ2) = 0. By the Lévy
continuity theorem the stochastic process (x1(t), x2(t)) has no limit in distribution as t → ∞.
Now item i of Theorem 1 follows.

Note that if N = 2 then y = (y1, y2) = 1
2(x1−x2, x2−x1). Therefore it is enough to consider

c.f. of r(t) := x1(t) − x2(t), i.e., ψr(t)(λ) = E eiλ·r(t) = χ1,2(t; λ,−λ). We can use system of
equations (2) with substitution (λ1, λ2) = (λ,−λ). Since now f1(t) = f2(t) = 1 for all t we have
to solve only the equation for χ1,2:

d

dt
ψr(t)(λ) = (−η1(λ)− η2(−λ)− β12 − β21)ψr(t)(λ) + β21 + β12.

Solving it and letting t→ +∞ we get the proof of item ii of Theorem 1

ψr(t)(λ)→ ψr(∞)(λ) =
β12 + β21

β12 + β21 + η1(λ) + η2(−λ)
. (4)

Consider now a joint distribution of (r(t),m(t)) =

(
x1(t)− x2(t) ,

x1(t) + x2(t)

2t1/α

)
where α is

the stability index from Assumption FSα) . The joint c.f. is

ψr(t),m(t)(λ, ρ) = E eiλ·r(t)+iρ·m(t) = χ1,2

(
t; λ+

ρ

2t1/α
,−λ+

ρ

2t1/α

)
, λ, ρ ∈ Rd.

Using eigenvectors of A(ε) we decompose ~f(0) =
3∑

k=1

cf,k(ε)~vk(ε) and rewrite solution of (2) as

~f(t) =
3∑

k=1

etµk(ε)cf,k(ε)~vk(ε) . (5)
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Since this representation holds for any fixed ε and t to obtain ψr(t),m(t)(λ, ρ) we substitute

ε = ε(t) =
(
η1

(
λ+

ρ

2t1/α

)
+ η2

(
− λ+

ρ

2t1/α

)
, η1

( ρ

t1/α

)
, η2

( ρ

t1/α

))
into (5). Note that ε(t) → ε(∞) := (η1(λ) + η2(−λ), 0, 0) as t → ∞. It follows from the above
analysis that the first and the third terms in (5) vanish as t→∞. The second term is a product
of two multipliers. The first multiplier, etµ2(ε)|ε=ε(t) depends on ρ and does not depend on λ.
The second one, cf,2(ε)~v2(ε)|ε=ε(t), depends on the both variables ρ and λ. By continuity of
cf,2(ε) and ~v2(ε) we obtain that cf,2(ε)~v2(ε)|ε=ε(t) → cf,2(ε)~v2(ε)|ε=ε(∞) as t → ∞. Recalling
definition of ε(∞) we conclude that cf,2(ε)~v2(ε)|ε=ε(∞) depends only on λ and its value is the
same as the value of ψr(∞)(λ) calculated already in (4). Let us evaluate the limit of tµ2(ε(t)) as

t→∞. By the stability property (1) we have ηj

(
ρt−1/α

)
= t−1ηj(ρ). Using (3) we get

tµ2(ε(t)) = −β12η1(ρ) + β21η2(ρ)

β12 + β21
+ o(1), t→∞.

So we have proved that

ψr(t),m(t)(λ, ρ) −→ β12 + β21
β12 + β21 + η1(λ) + η2(−λ)

exp
(
− β12η1(ρ) + β21η2(ρ)

β12 + β21

)
.

This is even more than it was stated in Theorem 2. Indeed, putting (λ, ρ) = (0, ρ) we obtain
not only convergence of ψm(t)(ρ) to some limit ψm(∞)(ρ) but also an explicit formula for the
limiting c.f., namely,

ψm(∞)(ρ) = exp
(
− β12η1(ρ) + β21η2(ρ)

β12 + β21

)
.

It is readily seen that distribution of m(∞) is α-stable.
Distributions similar to (4) were previously obtained in context of synchronization models

in [13,14]. They are related to the class of Linnik distributions.
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[5] Applebaum D 2004 Lévy Processes and Stochastic Calculus (Cambridge: Cambridge University Press)
[6] 1995 Flights and Related Topics in Physics Lecture Notes in Physics 450 ed M F Shlesinger, G M Zaslavsky

and U Frisch
[7] Uchaikin V V and Zolotarev V M 1999 Chance and Stability. Stable Distributions and their Applications

(Utrecht: VSP)
[8] Samorodnitsky G and Taqqu S 1994 Stable Non-Gaussian Random Processes: Stochastic Models with Infinite

Variance (Taylor & Francis)
[9] Billingsley P 1999 Convergence of Probability Measures (Wiley)

[10] Malyshev V and Manita A 2006 Phase Transitions in the Time Synchronization Model Theory of Probability
and its Applications 50 1 pp 134–141

[11] Manita A 2009 Stochastic Synchronization in a Large System of Identical Particles Theory of Probability and
its Applications 53 1 pp 155–171

[12] Manita A 2011 Brownian Particles Interacting via Synchronizations Communications in Statistics - Theory
and Methods 40 19–20 pp 3440–3451

[13] Manita A 2014 Intrinsic space scales for multidimensional stochastic synchronization models New Perspectives
on Stochastic Modeling and Data Analysis ed J R Bozeman, V Girardin et al (Athens: ISAST) pp 271–282

[14] Manita A 2014 Intrinsic scales for high-dimensional Lévy-driven models with non-Markovian synchronizing
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