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Abstract. A study of possibility to model the learning process on base of different forms
of timing-dependent plasticity (STDP) was performed. It is shown that the learning ability
depends on the choice of spike pairing scheme and the type of input signal used for learning.
The comparison of performance of several STDP rules along with several neuron models (leaky
integrate-and-fire, static, Izhikevich and Hodgkin-Huxley) was carried out using the NEST
simulator. The combinations of input signal and STDP spike pairing scheme, which demonstrate
the best learning abilities, were extracted.

1. Introduction

Despite the great amount of devoted research, the problem of development for spiking network a
learning mechanism, which is biologically founded and practically effective, is far from resolution.
There is a number of approaches [3, 4] to make spiking neural networks learn to respond with
the desired output to a given input with the help of different variations of Hebbian-inspired
learning. This task involves two problems:

• firstly, what input-output transformations a network can in principle implement with some
stable values of its synaptic weights;

• secondly, whether the network can learn the desired transformation with the chosen learning
protocol.

Obviously, a neuron cannot produce any output spike train in response to arbitrary input spike
trains. A less obvious problem, discussed in the section 4.5, is that the desired input-output
transformation may be possible but require synaptic weights that are unstable with the chosen
synaptic plasticity form.

Provided that the desired input-output transformation can be performed by the neuron with
some stable synaptic weights, in [1] a supervised learning protocol is suggested. It is based
on clamping the neuron output to desired, and the ability of any transformation, meeting the
requirements stated above, to be learnt by this protocol was proven for Leaky Integrate-and-
Fire neuron model for the case of all synapses receiving Poisson input trains with same mean
frequency.
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In this study we show that in case of different neuron models and more complex inputs
learning is also possible (Section 4.2). However, the learnability is heavily affected by the choice
of the scheme of pairing spikes in the STDP weight change rule (Section 4.1).

The reason in some cases is that the protocol of forcing the neuron to fire in desired moments
by stimulating it with current impulses may, firstly, sometimes fail to cause a desired spike, and,
secondly, not prevent the neuron from undesired spikes, caused by incoming synaptic currents
instead of teacher stimulation. To prove this a learning protocol without a neuron, in which the
weight change rule is just applied to the input trains and the desired output, is considered in
Section 4.3, and it provides more successful learning.

2. Neuron and synapse models

In the Leaky Integrate-and-Fire neuron model the membrane potential V changes with time as
following:

dV

dt
=

− (V (t)− Vresting)

τm
+

Isyn(t)

Cm

+
Iext

Cm

, (1)

When the potential reaches the threshold value Vth, the neuron fires a spike, then its potential
is instantaneously dropped to the value Vreset, and during the refractory period τref the synaptic
current has no effect on the potential. Vrest = 0, Vth was chosen to be 15.3 mV in all sections
unless other stated, the other LIF neuron parameters were taken as in [1].

We also used the Hodgkin-Huxley [5] and Izhikevich [6] neuron models, taking the constants
same as in the original works cited here, and static adder as a neuron, which simply accumulates
weights of synapses from which it receives spikes, and when the accumulated value reaches the
threshold Vth, the sum is dropped to zero and the neuron fires a spike.

As the synapse model we used postsynaptic current of exponentially decaying form along
with the Maass-Markram short-term plasticity [8], taking all parameters as in [1].

2.1. Spike-timing-dependent plasticity

STDP is a biologically inspired long-term plasticity model [7], in which each synapse is given a
weight 0 ≤ w ≤ wmax, characterizing its strength, and its change depends on the exact moments
tpre of presynaptic spikes and tpost of postsynaptic spikes:

∆w =


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, if tpre − tpost > 0,

W+ · (1−
w
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)
µ+

· exp

(

−
tpost − tpre

τ+

)

, if tpre − tpost < 0;

(2)

where W+ = 0.3 and W
−
= 1.035 · W+. The rule with µ+ = µ

−
= 0 is called additive STDP,

with µ = µ
−
= 1 — multiplicative, the one with µ+ = 0 and µ

−
= 1 is the van Rossum rule;

intermediate values 0 < µ < 1 are also possible.
In case of additive STDP the auxiliary clause is added to prevent the weight from falling

below zero or exceeding the maximum value wmax:

if w +∆w > wmax or w +∆w < 0, then ∆w = 0.
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2.2. Spike pairing schemes in the STDP rule

Figure 1. Spike pairing schemes: A –
symmetric, B – presynaptic-centered, C
– reduced symmetric. Redrawn from [7]

An important part of STDP rule is the scheme of
pairing pre-and postsynaptic spikes when evaluating
weight change according to the rule (2). Three
nearest-neighbour schemes [7] are shown on fig. 1:
symmetric A, presynaptic-centered B and reduced
symmetric C. Black tics denote moments of spikes,
and gray lines mean taking into account that pair of
spikes in the STDP weight update rule.

3. Experiment technique

3.1. The learning protocol

The following protocol suggested in [1] is to force the
synaptic weights of a neuron to converge to the target
weights:

(i) Obtaining the teacher signal

The neuron’s weights are set equal to the target, STDP is disabled, and the neuron’s
response to the input trains is recorded as the desired output.

(ii) Learning

The neuron’s weights are set random (but about 4 times smaller than the target ones),
STDP is turned on, and the same input trains are given to the neuron’s incoming synapses.
During this the neuron is stimulated by the teacher signal, obtained from the desired output
train by replacing spikes with 0.2-ms-duration current impulses of 2 mA (which is thousands
of orders more than typical magnitude of synaptic current).

Another protocol, further called Learning without neuron, is not to use any neuron at all on the
Learning stage, just to calculate weights change by the STDP rule using the input trains and
the desired output train.

3.2. The experiment configuration

The one neuron had 90 excitatory and 10 inhibitory synapses. The maximum synaptic weights
in the STDP rule (2) were chosen from N(54, 10.8), values less than 21.6 and more than 86.4

being replaced by 21.6 and 86.4 correspondingly. The target weights
−→
W target were chosen to obey

bimodal distribution: half of them were equal to zero, and the other half – to their maximum
values; because such weights distribution is known [7] to be a steady state settled by the additive
STDP rule.

For the implementation of neuron and synapse models we used the NEST simulator [9],
modified by the authors of [2] to implement different spike pairing schemes.

4. Results

4.1. Impact of the spike pairing scheme on the learning performance

Legeistein et al. in [1] used not a nearest-neighbour, but the all-to-all spike pairing scheme, and
used 20-Hz Poisson spike trains as input. In [2] the same experiment was conducted with three
nearest-neighbour schemes shown on Fig. 1, and the ability of weights to converge to the target
was shown to depend on the choice of spike pairing scheme.

As a measure for learning performance the deviation β between current and target weights
was used:

β(t) =

∑

90

i=1
|W i(t)−W i

target|
∑

90

i=1
W i

target

.
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Table 1. β after learning with different spike
pairing schemes in STDP rule and different
input types

STDP scheme uniform normal Poisson

all-to-all 0.11 0.11
A 1 1 0.8
B 0.10 0.10 0.08
C 0.08 0.08 0.05

So, the closer β is to 0, the more successful the
learning is.

In Table 1 β after 3,000 seconds of
training LIF neuron having additive STDP
with different spike pairing schemes and
receiving input of 20-Hz-mean trains to all
synapses is shown, averaged over 5 independent
simulations. The neuron threshold Vth was
chosen about 15.6 mV, so that the mean output
frequency was about 25 Hz. Normal input

means that the interspike intervals in the input trains were normally distributed, and uniform
input means that on every simulation step the neuron had a fixed probability of receiving a spike
from that input.

The scheme C demonstrates the best learning performance, so it is the one used for the rest
of the paper.

4.2. Possibility of learning with different types of input signals and different neuron models

As can be seen from Table 2, different neuron models can learn target weights not only in case
all synapses of the neuron receive trains of one constant mean frequency, but also if frequency
of each input train changes every 100 s. The amplitude of current impulses the neuron was
stimulated with on the Learning stage was 2 mA. The static neuron threshold was 15300, and,
since such type of a neuron cannot be stimulated with current, the Learning stage in this case
was performed according to the Without a neuron protocol.

Table 2. β after training different neuron models with different input types

10 Hz 10, then 60 Hz 10, 30, 50, 100 Hz
Neuron model normal poisson normal poisson normal poisson

LIF neuron 0.09 0.07 0.04 0.04 0.04 0.05
Hodgkin-Huxley neuron 0.10 0.07 0.03 0.04 0.06 0.11
Static neuron 0.03 0.03 0.05 0.08 0.19 0.35

4.3. Learning without a neuron, based only on input and output signals and STDP rule

Slightly less successful learning is observed if different synapses receive inputs of different mean
frequencies. On Fig. 2 is an example of learning with input that causes rather poor weights
convergence: half of synapses received Poisson trains with mean frequency of 30 Hz, and the
other half — 10 Hz. It can be seen that increasing the neuron threshold on the Learning stage
by 1 mV compared to the Obtaining teacher signal stage improved the weights convergence.
Further increase in threshold does not provide more improvement. So the reason was supposed
to be in avoiding unforced spikes, i.e. caused by the incoming synaptic currents instead of
teacher impulses, and therefore differing from the desired output.

Another fact we found is that choosing the magnitude of the teacher current impulses to be
1 mA instead of 2 mA impairs learning, but increasing it above 2 mA does not improve the
learning more. The reason was supposed to be that high teacher current avoids cases when a
teacher impulse does not force the neuron to fire.

To confirm the explanations of these two facts we introduced the learning protocol without
neuron, using just the inputs and the desired output. In the context of the two facts being
discussed in this section, such a protocol provides the idealised way of learning, with no difference
between the postsynaptic train and the desired output. Fig. 2 shows that learning without a
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Figure 2. β(t) during training LIF
neuron with additive STDP. In this case the
neuron had 100 excitatory and 90 inhibitory
synapses; half of excitatory and all inhibitory
synapses received Poisson trains with mean
frequency of 30 Hz, and another half of
excitatory synapses – of 10 Hz. The LIF
neuron threshold was 15.3 mV on both
stages (violet), then increased to 16.3 on the
Learning stage (green), then learning without
a neuron was performed (blue)
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Figure 3. β(t) during learning when
Izhikevich neuron was used on both stages;
when Izhikevich neuron was used on the
Getting teacher signal stage, and learning
was performed without neuron; and, for
comparison, when LIF neuron was used on
both stages. Both neurons were producing
output with roughly same mean frequency

neuron is even more successful than the one with neuron and with increasing its threshold on
the learning stage.

As a result, we conclude that differences in the learning performance of the protocols with
and without the neuron are caused by the disadvantages of the protocol of presenting the teacher
signal to the neuron in the form of current impulses, while, if the learning with some input and
output trains was unsuccessful even without neuron, the reason would be that such input-output
transformation cannot be learnt ever.

4.4. Learning with the Izhikevich neuron

No learning is possible using the Izhikevich neuron model on both Getting reinforcement signal
and Learning stages, but in the case of using the protocol without a neuron with teacher signal
obtained with Izhikevich neuron learning does take place (Fig. 3). So, the protocol of stimulating
the neuron with current impulses does not work with the Izhikevich neuron, though output trains
it produces can be used as desired during learning.

In case of additive STDP used in [1] and in this study (except the current section), only
weight values of zero and maximum are equilibrium points, so target weights must obey the
bimodal distribution in order to be stable. It must restrict the variety of possible input-output
transformations.
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4.5. Impossibility of learning with non-additive STDP forms
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Figure 4. β(t) during training
without neuron with 20 Hz Poisson
trains as inputs with different µ+ and
µ
−

in the STDP weight update rule:
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= 0, multiplicative
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−

= 1, van Rossum µ+ =
0 and µ

−
= 1, The desired output

was obtained with LIF neuron having
threshold of 15.3 mV.

If learning with multiplicative STDP, i. e. with
µ+ = µ

−
= 1 in weight change rule (2), was possible,

intermediate values of weights could be reached during
learning. However, in case of multiplicative STDP
weights do not converge to the target (see Fig. 4).
Increasing the dependency of weight change ∆w on
w makes learning less successful. Choosing µ+ =
0.12 and µ

−
= 0.1236 (as in [1]) leads to rather

poor weights convergence, despite this values are still
below the critical value of µ = 0.023 exceeding which
the steady state of weights from bimodal becomes [7]
unimodal. Therefore, making intermediate values able
to be reached as a result of learning still remains a
question.

5. Conclusion

An output train can be used as desired during learning
with some input only if it was obtained in response to
that input, but regardless of the neuron model it was
obtained with. In other words, output must be somehow
correlated with the input. Nevertheless, learning may
be impossible even with desired output correlated with
input, if such input-output transformation can only be
realised by a neuron with non-bimodal weights.

During learning by stimulating the neuron to fire at
desired moments, deviations of the neuron’s spike times from the desired output severely impairs
learning performance compared to the case when output during learning exactly satisfies the
desired one, as in the protocol without a neuron. The reason is that in STDP, like in any Hebbian
learning rule, a postsynaptic spike can only lead to increasing synaptic weights due to “pre-
before-post” part of the rule, regardless of whether it is desired or not. To provide the mechanism
of penalizing synapses for causing undesired spikes, in most works [3, 4] some anti-Hebbian
clauses are introduced, while their biological plausibility has not yet been proved. Development
of both efficient and biologically plausible learning protocol still remains an unsolved problem.
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