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Abstract. Formula for calculating the concentration profile of ions in biological membranes
has been obtained. It is assumed that ions are moving in a viscous medium under the action of
the electric field and a concentration gradient. The problem is that ions are coated with shells
consisting of water dipoles. These dipoles copy the form of the ions and in a strong electric
field they can acquire the shape of an ellipsoid which changes the effective ion radius in the
membrane. Calculation of the Na™ and K*! profiles leads to a conclusion that active and
passive transport of ions is closely associated with the shape of the hydrated shells. The work
was performed at the Veksler and Baldin Laboratory of High Energy Physics, JINR, Dubna

1. Introduction

In solid, liquid and gaseous media the force of the electric field acting on ions is balanced by
the friction force proportional to the velocity of particle motion. At equality of forces, the
drift velocity of charges is to be proportional to the electric field intensity. In a membrane,
this velocity also depends on the concentration gradient, and on a specific membrane feature
allowing the so-called active or passive transport of ions. Hereafter, we calculate the profiles of
the Nat! and K*! concentration in a membrane and show that the active or passive transport
is determined by the shape of the hydrate shells. The work was performed at the Laboratory of
High Energy Physics, JINR, Dubna.

2. Concentration profile of ions in a membrane

Before considering the ion motion in a biological membrane we recall the classical scheme of
these calculations using the electron gas in metal [1]. At the collision with the ion lattice of
metals the electrons give up, on the average, a momentum muv during the mean interval of
the free motion 7/(s), where m/(kg) is the mass, and v/(m-s~!) is the mean drift velocity of
electrons. On equating the momentum transfer velocity muv/7/(N) to the electric force eE/(N)
of the electric field E/(V-m™!) acting on the elementary charge e/(C), results [1] to the equation
(1) which is one of the forms of the Ohm law

mv/T = —eF | (1)

from where it follows that the drift velocity v is proportional to the field intensity F.

A physical analogy is also preserved in the case when the ions are moving under the action of
the electric field in liquid solutions. For a spherical particle of radius r in a solvent of viscosity
n/(kg-m~ts~!), the friction force is given by Stokes’ law Fg = 6mnrv, where v is the velocity of
the ion. This time, as in (1), equating of forces gives

6mnruv = zekE | (2)
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where z is the ion valence. The velocity v should be again proportional to the field in a membrane
but, in solutions, there is also the thermodynamic force F,/(J-m~!) depending on the gradient
of the normalized concentration of ions C(z) [2]
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where k = 1.38 - 10723 /(J.K~!) is the Boltzmann constant, 7'/(K) is the absolute temperature,
x/(m) is the ion coordinate along the channel; 0 < x < d, d is the membrane thickness. Adding
F, and v = u - E to equation (2), where u/(m?- s71. V1) is the mobility of the ion, we have

(4)

6mnrull = zeE — kT (81nC) ,

ox

The electric field is equal to the potential gradient £ = —dp/dx. Let p(x = 0) = 0 be the
electrical potential of the solution, then p(z = d) = V,, = —(0.05 = 0.15), where V,./(V) is the
rest potential of the membrane, and integrating (4) over z we obtain:

InC(x) —InC(0) = %(ze — 6mnru) /Ox —dy = %(ze — 6mnru) <VT2 - 0) . (5)

The function V. - z/d, describes a linear voltage distribution over z. The mobility v in (5) is
conveniently expressed in terms of the diffusion coefficient D/(m?-s~!), since the latter does not
depend on the molecular weight of ions. Using the Einstein relation [2]

zeD
— ~ 6
YT ©)
substituting equation (6) into (5), and replacing (—(—V,) = |V;|) we obtain the following formula
to calculate the ratio of concentrations

C(x) zelVy| 6mnD
co) Mo d(l_ KT T)}'

(7)

Let the radius r of the ion at which the expression in the brackets is equal to zero be denoted
as 9. Without a membrane, C(x) = C(0), the ion radius r = rg is fixed and it is determined
by the Stokes - Einstein formulae [2]

kTo
rog = :
* ™ 6mmoDo

(8)

Hence, the ion profile in a solution is the straight line C'(x)/C(0) = 1, shown in Fig 1. Combining
formulas (7) and (8) we get the concentration profile in the common case:

B ze[Velz (0 nDTy 7Y, zelVelz (0 1
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where r is the actual radius of an ion in the membrane. In a solution of different viscosity
and temperature & = nDTy/(noDoT) = 1 since the ion radius in (8) is fixed. Assume, for
example, that the Nat! ions are in the water at Ty = 298/(K). In this case n9 = 0.891 - 1073,
the diffusion coefficient is Dg(Na™!) = 1.33 - 107 [2]. At the temperature T = 309/(K),
n = 0.699 - 1073 [2], and since ¢ = 1 we have Ty/n9Do = T/nD and the diffusion coefficient is
changed to D(Na™) = 1.76 - 1079; however at both temperatures the radius of Na*! ions stays
the same: r = ro = 184 - 10712 /(m).
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Nevertheless, it is known [3] that the calculation by (8) coincides with the experimentally
measured radius with the accuracy up to 2. The problem is that the ions are coated with shells
consisting of water dipoles. We illustrate the importance of such complication by the following
examples. Let us imagine that the radius of Na*!(z = +1) in a membrane is enlarged due to
hydration up to r = 1.5 - 79 = 1.5 x 184 - 10712, The new profile calculated by (9) is presented
in Fig. 1. The ion concentration decays along the membrane. This example demonstrates the
concentration profile at the passive transport of ions.

In the next example, we consider the K*!(z = +1) ion having a larger dipole polarizability
compared with the Na™! one. Note that dipole and quadrupole interactions of ions with an
electric field in membranes are small one to influence any ion motion. The important reason to
consider these interactions follows by the fact that the water dipoles copy the shape of the ions.
Such complex charge structures are considered in physics of nuclear moments.
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In a strong electric field, these objects can acquire an elliptical shape, and the hydrated
shell around an ion has to repeat this shape. Because hydrated shells are ingredients of the
solvent, the ellipsoidal objects in a solution have a different friction and therefore the different
effective radius compared with the spherical one. This means that the concentration profile, in
accordance with (9), is changed. Suppose now that 7o = (a+b)/2, where 2a are the length of the
major and 2b of minor ellipse axes, respectively. Let K*! ion be in the water at Ty = 298/(K)
then 19 = 0.891- 1073, and since Do(K™!) = 1.96- 1079 [2] then (8) gives ro = 125-107'2/(m).
Assuming that ¢ = 1951072 and b = 55- 10712, the effective radius of the prolate ellipsoids in
a solution is 7, 2 (a - b?)'/3 = 8410712 [2]. Substituting of r,/ro = 84/125 2 0.67 and ¢ = 1 in
(9) gives the concentration profile of K*1 ion, shown in Fig. 1. This profile displays the active
transport of the K™! ions. For numeric estimations, it is conveniently to simplify (9) assuming

& =1, x = d, which yields
=d) ze|Vy| r
— L = 1—— 1
eap(Z (1= D) (10)

where e/k = 11594/[C/(J-K~1)], T (K). Hence, for the above Na*! ions r/rqg = 1.5 and at
|V,| = 0.15/(V), and (10) gives C(d) = C(0)/25. Thus, the Nat! intracellular concentration is
decreased by 25 times compared with extracellular one; like approximately it does in the cells
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of a squid. This is the passive transport of ions. For the K*! ion with the shape of a prolate
ellipsoid 7p01/T0 = 84/125 = 0.67 and C(d) = 7- C(0); hence, the K™ will increase their
concentration on passing the membrane. The case of K*! illustrates a mechanism of the active
transport by changing the shape of hydration shells of the ions.

3. Conclusion

Equations (9) and (10) have been obtained to calculate the concentration profile of ions in
biological membranes. It is shown that the friction forces and effective ion radius in membranes
depends on the shape of shells covering ions. Analysis of the Nat! and K*! profiles lead to a
conclusion that a possible mechanism of active and passive transport can be closely associated
with changing of hydrated shells of ions by membranes.
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