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Abstract. Continuum-scale equations of radiative transfer and corresponding boundary
conditions are derived for a multi-component anisotropic medium consisting of components
in the range of geometrical optics. The derivations are obtained by employing the volume-
averaging theory. This study generalizes the previous derivations obtained for multi-component
isotropic media.

1. Introduction
Analysis of radiative heat transfer in heterogeneous media is pertinent to a variety of
technological and scientific applications including combustion, solar energy, thermal insulations
and space systems, and natural environments such as porous soils, snow, and wood. These media
often consist of morphological features with the characteristic size significantly larger than the
radiation wavelength of interest and, therefore, optical and radiative analyses can be based on
the laws of geometrical optics. The radiative transfer equation (RTE) is typically employed
as the theoretical basis for radiative characterization of such media assuming the media are
homogeneous and described by a set of radiative properties [1]. The radiative properties—
the extinction and scattering coefficients, and the scattering phase function—can be obtained
theoretically or based on experimental measurements. A phenomenological extension of the
RTE to heterogeneous media is based on the introduction of apparent radiative properties
properties, which account for the actual morphology and composition of the multi-component
medium. Theoretical and experimental approaches to determination of the apparent radiative
characteristics of heterogeneous media are discussed in [1–3]. Volume-averaging approaches
directly account for the multi-component composition and complex morphology of the medium.
They result in coupled volume-averaged RTEs, one for each component or phase [4–6]. The
derivation are based on the assumption that the media and their components are isotropic.
The latter assumption limits the applicability of the volume-averaging approaches to multi-
component anisotropic media, found in many applications such as described in [7].

Previous pertinent studies on directional radiative characterization of anisotropic
heterogeneous media focused on ordered, layered structures [8] and fibrous materials [9, 10]. In
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this paper, the continuum-scale RTEs for multi-component anisotropic media with components
in the limit of geometrical optics are derived along with the associated boundary conditions and
radiative property definitions by employing the volume-averaging theory. The theory presented
is an extention of the previous derivations for multi-component isotropic media presented in [5,6].

2. Continuum-scale equations of radiative transfer
Consider radiative transfer in a multi-component anisotropic medium. The medium consists of
i = 1, . . . ,M1 and i = M1 + 1, . . . ,M semi-transparent and opaque components, respectively,
each of an arbitrary shape. Each component i is adjacent to j = 1, . . . , Ni,1 and j =
Ni,1 + 1, . . . , Ni semi-transparent and opaque components, respectively. The present analysis
is subject to the following assumptions: (i) all components are non-polarizing and the state of
polarization can be neglected; (ii) all components are at local thermodynamic equilibrium; (iii)
characteristic dimensions of all components are much larger than the radiation wavelengths of
interest so that laws of geometrical optics are valid in each component; (v) diffraction effects
are negligible; (vi) dependent-scattering effects due to inter-component radiative interactions
are negligible; (vii) all components are at rest as compared to the speed of light; (viii) radiative
transfer in each component and the whole medium is quasi-steady.

Each component i is characterized by the set of the discrete-scale optical and radiative
properties: the effective refractive index ni(ŝ), the absorption and scattering coefficients,
κλ,d,i(~r, ŝ) and σλ,s,d,i(~r, ŝ), respectively, and the scattering phase function Φλ,d,i(~r, ŝi, ŝ). Note
that the refractive indices are assumed to be indepdenent of wavelength and position for all
components. Furthermore, each component i is characterized by its temperature Ti(~r), i.e. the
components are allowed to be at thermal non-equilibrium with respect to each other.

The quasi-steady discrete-scale intensity in each component i can be determined by solving
the corresponding quasi-steady discrete-scale RTEs [1]:

ŝ · ∇~rLi (~r, ŝ) = −βd,i (~r, ŝ)Li (~r, ŝ) + κd,i (~r, ŝ)Lb,i (~r) +
σs,d,i (~r, ŝ)

4π

4π∫
Ωi=0

Li (~r, ŝi) Φd,i (~r, ŝi, ŝ) dΩi,

i = 1, . . . ,M, (1)

where the spectral subscript λ has been omitted for brevity. Lb,i is the spectral blackbody
intensity inside the component i. Equation (1) is subject to the boundary conditions at
Aij,ŝ · n̂ji>0:

Li (~rij , ŝ) =

∫
Ωŝi · n̂ji>0

τ
′′

ji (~rij , ŝi, ŝ)Lj (~rij , ŝi) ŝi · n̂ji dΩi −
∫

Ωŝi · n̂ji<0

ρ
′′

ij (~rij , ŝi, ŝ)Li (~rij , ŝi) ŝi · n̂ji dΩi,

j = 1, . . . , Ni,1, (2a)

Li (~rij , ŝ) = ε
′

ji (~rij , ŝ)Lb,j (~rij)−
∫

Ωŝi · n̂ji<0

ρ
′′

ij (~rij , ŝi, ŝ)Li (~rij , ŝi) ŝi · n̂ji dΩi,

j = Ni,1 + 1, . . . , Ni, (2b)

where ~rij is a position vector at the interface Aij , and ε
′
ji and Lb,j (~rij) are the directional

spectral emissivity of the interface between components j and i and the blackbody intensity
emitted by the component j into the component i, respectively. A superficial average is taken
for each term in Eq. (1). Applying the spatial averaging theorem (SAT) [11],

〈∇~r Li (~r, ŝ)〉 = ∇~xIi (~x, ŝ)− 1

V (~x)

Ni∑
j=1

∫
Aij

Li (~r, ŝ) n̂ji dA, Ii (~x, ŝ)
def
= 〈Li (~r, ŝ)〉 (3)
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to the resulting term containing the intensity gradient, and following the further derivation steps
as elaborated for the case of isotropic multi-component media [6] leads to

ŝ · ∇~xIi (~x, ŝ) = −

βd,i (~x, ŝ) +

Ni∑
j=Ni,1+1

κij (~x, ŝ) +

Ni,1∑
j=1

σs,t,ij (~x, ŝ) +

Ni∑
j=1

σs,r,ij (~x, ŝ)

Ii (~x, ŝ)

+ κd,i (~x, ŝ) Ib,i (~x, ŝ) +

Ni∑
j=Ni,1+1

κjiIb,j (~x, ŝ) +
σs,d,i (~x, ŝ)

4π

4π∫
Ωi=0

Ii (~x, ŝi) Φd,i (~x, ŝi, ŝ) dΩi

+

Ni,1∑
j=1

σs,t,ji (~x, ŝ)

4π

4π∫
Ωi=0

Ij (~x, ŝi) Φt,ji (~x, ŝi, ŝ) dΩi +

Ni∑
j=1

σs,r,ij (~x, ŝ)

4π

4π∫
Ωi=0

Ii (~x, ŝi) Φr,ij (~x, ŝi, ŝ) dΩi,

i = 1, . . . ,M1. (4)

The continuum-scale absorption and scattering coefficients, and the scattering phase functions,
associated with the superficial average intensities Ii and Ib,j appearing in Eq. (1), are defined as

κij (~x, ŝ)
def
= −

∫
Aij,ŝ · n̂ji<0

α
′

ij (~rij , ŝ)Li (~rij , ŝ) ŝ · n̂ji dA

Ii (~x, ŝ)V (~x)
, (5a)

κji (~x, ŝ)
def
=

∫
Aij,ŝ · n̂ji>0

ε
′

ji (~rij , ŝ)Lb,j (~rij , ŝ) ŝ · n̂ji dA

Ib,j (~x, ŝ)V (~x)
, (5b)

σs,r,ij (~x, ŝ)
def
= −

∫
Aij,ŝ · n̂ji<0

ρ
′��
ij (~rij , ŝ)Li (~rij , ŝ) ŝ · n̂ji dA

Ii (~x, ŝ)V (~x)
, (5c)

σs,t,ij (~x, ŝ)
def
= −

∫
Aij,ŝ · n̂ji<0

τ
′��
ij (~rij , ŝ)Li (~rij , ŝ) ŝ · n̂ji dA

Ii (~x, ŝ)V (~x)
, (5d)

Φr,ij (~x, ŝi, ŝ)
def
= −

∫
Aij,ŝ · n̂ji>0

ρ
′′

ij (~rij , ŝi, ŝ)Li (~rij , ŝi) ŝi · n̂ji ŝ · n̂ji dA

(4π)
−1
σs,r,ijIi (~x, ŝ)V (~x)

,

ŝi · n̂ji < 0, (5e)

Φt,ji (~x, ŝi, ŝ)
def
=

∫
Aij,ŝ · n̂ji>0

τ
′′

ji (~rij , ŝi, ŝ)Lj (~rij , ŝi) ŝi · n̂ji ŝ · n̂ji dA

(4π)
−1
σs,t,jiIj (~x, ŝ)V (~x)

,

ŝi · n̂ji > 0. (5f)

The set of Eqs. (4) presents generalization of Eqs. (18) and (27) in [5], and Eqs. (33) in [6] for a
multi-component anisotropic medium consisting of any number of semi-transparent and opaque
components. The definitions of continuum-scale radiative properties, Eqs. (5a)–(5f) provide the
mathematical basis for development of numerical techniques for determination of continuum-
scale radiative properties utilizing the exact geometry of multi-component media. They require
the knowledge of the complete actual and blackbody discrete-scale radiative intensity fields in
each component obtained for a selected model problem.

Eurotherm Conference 105: Computational Thermal Radiation in Participating Media V IOP Publishing
Journal of Physics: Conference Series 676 (2016) 012015 doi:10.1088/1742-6596/676/1/012015

3



3. Continuum-scale boundary conditions
Equations (4) are subject to boundary conditions at the wall-medium interface at ŝ · n̂w > 0,
where n̂w is a unit normal vector pointing from the wall into the medium. The wall is assumed to
consist of only a single component that can be either semi-transparent or opaque. The discrete-
scale boundary conditions at the boundary of the multi-component medium are formulated
analogously to the boundary conditions (2a) and (2b). They read for the semi-transparent and
opaque walls, respectively:

Li (~riw, ŝ) =

∫
Ωŝi · n̂wi>0

τ
′′

wi (~riw, ŝi, ŝ)Lw (~riw, ŝi) ŝi · n̂wi dΩi −
∫

Ωŝi · n̂wi<0

ρ
′′

iw (~riw, ŝi, ŝ)Li (~riw, ŝi) ŝi · n̂wi dΩi, (6a)

Li (~riw, ŝ) = ε
′

wi (~riw, ŝ)Lb,w (~riw)−
∫

Ωŝi · n̂wi<0

ρ
′′

iw (~riw, ŝi, ŝ)Li (~riw, ŝi) ŝi · n̂wi dΩi, (6b)

The variation of the discrete-scale radiative properties and the curvature of the wall–medium
interface are assumed to be negligible over the interface area associated with the averaging
volume V adjacent to said boundary, Aiw,ŝ · n̂wi>0. The continuum-scale boundary conditions
are obtained by surface averaging of the boundary intensity Li (~riw, ŝ) over the portion of the
wall-medium interface inside the averaging volume V adjacent to the wall, Aw,

Ii (~xw, ŝ) =

∫
Ωŝi · n̂wi>0

τ
′′

wi (~xw, ŝi, ŝ) Iwi (~xw, ŝi) ŝi · n̂wi dΩi −
∫

Ωŝi · n̂wi<0

ρ
′′

iw (~xw, ŝi, ŝ) Ii (~xw, ŝi) ŝi · n̂wi dΩi, (7a)

Ii (~xw, ŝ) = ε
′

wi (~xw, ŝ) Ib,wi (~xw, ŝ)−
∫

Ωŝi · n̂wi<0

ρ
′′

iw (~xw, ŝi, ŝ) Ii (~xw, ŝi) ŝi · n̂wi dΩi. (7b)

4. Summary and conclusions
A mathematical model for radiative transfer and characterization of multi-component anisotropic
participating media with the individual components in the limit of geometrical optics has
been formulated. The model includes the set of governing continuum-scale radiative transfer
equations, and the associated boundary conditions and radiative property definitions. The
formulation presented is a generalization of the previous formulation for multi-component
isotropic media with components in the limit of geometrical optics. The model presented
finds application in radiative transfer analysis and characterization of a broad range of multi-
component anisotropic media encountered in engineered and natural systems.
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