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Abstract. In the experiments at the FOBOS spectrometer [1] dedicated to study the
spontaneous fission of the 248Cm and 252Cf nuclei in the mass correlation distribution of fission
fragments new unusual structures bounded by magic clusters were observed for the first time.
The structures were interpreted as a manifestation of a new exotic decay called collinear cluster
tri-partition (CCT). These pioneer results were confirmed and detailed later in the series of
experiments at different time-of-flight spectrometers [2]. Interpretation of the results obtained
needs estimation of the statistical reliability of the structures mentioned above. The report
presents the results of the solution to the problem of statistical reliability estimation on the
basis of morphological image analysis [3].

1. Introduction
In this work based on the results of RFBR grants 14-02-93960, 14-07-00409-a we continue to
study a previously unknown type of nuclear transformations found by project authors – collinear
cluster tri-partition (CCT). In series of experiments at different time-of-flight spectrometers we
have observed multiple manifestations of a new type of multibody decay of low excited heavy
nuclei called by us collinear cluster tri-partition (CCT) [1], [2]. The results were obtained
predominantly in the frame of the “missing mass” approach. It means that only two from at least
three decay partners were actually detected whereas a total mass of these fragments being less
the mass of mother system serves a signature of a multibody decay. Thus analyzing of the mass-
mass distribution of the fission fragments detected in coincidence let reveal us the decay mode
absolutely unknown in the past. Unfortunately there is an essential random background linked
with the scattered fragments from the conventional binary fission in the mass region of possible
manifestation of the CCT. We have find that due to the physics behind (clustering) the CCT
events form some regular predominantly linear or/and almost rectangular structures in the mass-
mass plots (see the example of “rectangular” structures at figure 1). The main goal of this work
is to estimate the statistical reliability of these structures in the mass correlation distribution
of fission fragments or, in other words, to estimate probability of “random” realization of the
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Figure 1. Example of a “rectangular”
structure for estimating of its reliability. The
chosen ”field of view” is shown by a gray line:
Ma varies from 125 a.m.u. to 169 a.m.u, Mb
varies from 79 a.m.u. to 96 a.m.u.

Figure 2. Example of do-
mains A1, A2 ⊂ Ω of constant
brightness in a model image of a
“rectangular” structure.

corresponding structures. Previously we have developed an approach [4] based on morphological
image analysis [3] which will be used to solve this task.

2. Method of morphological image analysis
Let us briefly consider some notions of the method of morphological image analysis [4]. Let f̃
be an experimentally obtained signal (mass-mass distribution), which can be represented in the
form

f̃ = f + ν, (1)

where f is a signal possibly containing several structures of our interest, and ν is additive noise.
An image of a signal f(·) is understood as a numerical square-integrable function defined on
a subset X of the Euclidean plane R2. The domain X is termed the field of view, and the
value f(x) of the function f(·) at the point x ∈ X is termed the brightness of the point x of
the field of view X. In the case under consideration, X = {x1, . . . , xn} and, correspondingly,
the images f̃(·), f(·), and ν(·) from (1) are defined at the same points and are elements of the
Euclidean plane Rn. As to the error ν ∈ Rn, we will assume that it is a random image with
zero mathematical expectation Eν = 0 and the correlation operator σ2I, where I ∈ {Rn → Rn}
is the unit operator and σ2 is unknown.

Let us denote the “rectangular” structure image by ω(·) and assume it to be defined on
a variable-size mobile subset Ω of the field of vision X. The form of the image ω(·) will be
understood as the set of images

Vω =
{
ω(·), ω(x) = c1χA1(x) + c2χA2(x), c1 ≥ c2, c1, c2 ∈ R1, x ∈ Ω

}
, (2)

where χAi(x) =

{
1, x ∈ Ai,

0, x 6∈ Ai,
x = 1, 2. Vω is a convex closed cone in R2 and in Rn. In

this definition A1 and A2 are different subsets of constant brightness in Ω. According to this
definition, the form of the image of an object contains all images of this object differing in the
brightnesses on subdomains of constant brightness in Ω.

Figure 2 shows domains A1 and A2 ⊂ Ω with a constant brightness in the image of a
“rectangular” structure. In this figure, the field of view is divided into subdomains A1 and A2.
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The “rectangular” structure directly corresponds to the domain A1, and the points surrounding
it correspond to the domain A2. The form (in the common sense of this word) and size of the
domains A1 and A2 are specified (postulated) a priori by the researcher. The proposed method
enables one to verify the correctness of this postulate. In the given case, the form of the linear
structure was determined on the basis of figure 1. The brightnesses over the domains A1 and A2

are assumed to be constant. The fact that the brightness at the image point belonging to the
“rectangular” structures must be higher than that at the points surrounding it is reflected in
the condition c1 ≥ c2 in expression (2).

The projection (see below) of some image g(·) defined on Ω onto a form Vω is understood
as the image (PVωg)(·), which uniquely exists, because Vω is a convex closed cone (see [3]):
(PVωg)(x) = ĉ1χA1(x) + ĉ2χA2(x), x ∈ Ω, where ĉ1 and ĉ2 are solutions to the following
minimization problem:∫

Ω

(g(x)− ĉ1χA1(x)− ĉ2χA2(x))2 dx = min
c1,c2∈R1, c1≥c2

∫
Ω

(g(x)− c1χA1(x)− c2χA2(x))2 dx.

Below, we will omit, for brevity, the sign (·) in the notation of images.
Let us consider the problem of separating the “rectangular” structure in the framework of the

above-formulated model of signal detection as a problem of testing the statistical hypothesis H
that the image f contains a fragment fω that can be represented in the form

H : ∃fω = g + ν, ∃t ∈ T, g ∈ t(Vω), ν ∈ N (0, σ2I), ||ν||2 � ||g||2, (3)

where the form of g coincides with (2) within a shift and scale transformation, t ∈ T is a shift
and scale transformation, T is the class of such transformations, ||z||2 =

∫
Ω z(x) dx, and z is

some image. The alternative K is that such fragments are absent. For solving the problem of
testing this hypothesis, the following functional [3] is used:

j(z) =
||(I − PVω)z||2

||(PVω−PVU
)z||2

. (4)

In (4) z is some image and PVU
z is a projection of image z onto the form U of the uniform

field of view: U = {u(·), u(x) = constχω(x), x ∈ Ω}. Functional (4) possesses the following
properties [4]. If there is a fragment fω satisfying condition (3) but not representable in the
form of the the “noised uniform field of view”

fω = g + ν, ∃t ∈ T, g = t(U), (5)

then the value of functional (4) is small. If there is a fragment fω satisfying condition (5), then
the functional j(fω) has the order O(1). If, at last, fragments fω satisfying condition (4) or (5)
are absent, then the functional j(fω) again has the order O(1).

The decision rule has the following form: a hypothesis H is accepted if, by a shift and scale
transformation, a fragment fω can be found such that j(fω) ≤ A, where A is an empirically
determined constant, and it is rejected if such a fragment is absent. The value of functional (4)
characterizes the “distance”’ between an image z and an image of the form (2). Functional (4)
is invariant with respect to brightness and contrast transformations. In order to determine
the constant A, the value of the constant was found (based on real data) at which the image
of a determined “rectangular” structure satisfied the researcher. In our case, that was A =
1.35. Then, the reliability of the obtained value was tested by means of a model experiment.
We used 100000 model images of an additive noise with the parameters corresponding to the
real experiment. Then an empirical distribution of the values of functional (4) at the specified
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Figure 3. Image for “rectangular”
searching taken from figure 1. Gray
lines were added manually to show
“magic” numbers.

Figure 4. The “rectangular”
structure found by morphological
method.

noise level was constructed. On the basis of this distribution, the probability P (j ≤ A) ≈ 0.02
was found. This probability is the probability of false acceptance of a hypothesis against the
nearest “homogeneous field of view” alternative. Properties of the functional (4) imply that this
probability estimates an upper bound for the probability of false acceptance of the hypothesis
against the alternative that such a fragment is absent. This criterion is analogous to the principle
of the locally homogeneous strongest criterion [5]. According to the statistical analysis made
above, the probability, that the “rectangular” structure found on real data (see figures 3, 4), is
generated by the noise is small and approximately equals to 2%.

3. Conclusion
In order to obtain the quantitative estimates of the “rectangular” structures statistical reliability
an approach based on morphological image analysis has been developed. In the framework of this
approach, the probability of a random realization (due to the presence of noise) of a structure
or its scaled copy is estimated. Only the presence of such an estimate justifies the physical
interpretation of the revealed structures, removing the question of whether these structures are
statistical artifacts or not.
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