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Abstract. Solar magnetic field structure in active regions is complicated for modeling. We
construct by magnetogram data a special structure – discrete Morse-Smale complex. We perform
simplification of complex using persistence pair elimination. Finally, we obtain a simplified
complex that stores main topological features of the magnetogram data and neighbourhood
relation between them.

1. Introduction
Matching of the observed magnetic fields in Active Regions (AR) of the Sun with
models is a complicated issue. Actually, magnetograms produced by space observatories
are too complex [4] to compare with simple models (like a magnetic charge). Thus, simplification
of the magnetograms is necessary. However, the greater part of AR formed by the background
noise with small intensity values. Influence of the sunspot on the topology (for example, the Euler
characteristic) of the entire AR is low [7]. Moreover, AR includes parts of both polarities with
distinct field extrema values. Critical points of the scalar field are characterized by the Morse
index — the number of negative eigenvalues of Hessian. Thus, in the two-dimensional case,
minima have index zero, maxima — index two, and saddle points — index one. We introduce
a discrete structure (cell complex), matching minima with vertices, saddle points with edges,
and maxima with faces of this structure. After that, we construct a discrete gradient field which
consists of ascending and descending integral lines. If intersections of the integral lines are
transversal, we obtain cells of the so-called Morse-Smale complex. Every cell contains exactly
one minimum, one maximum, and two saddle points. Euler characteristic (χ) defined as an
alternating sum of critical point numbers of the different indices. Hence simplification methods
must reduce critical point number in a way that do not change χ. Editing, or simplifying of
field consists of sequentially eliminations of the persistent pairs “saddle - minimum” or “saddle
- maximum”. The global field topology during simplification remains unchanged.

2. Related Work
Discrete Morse theory is a useful tool of the topological data analysis. There are many
applications of this in astrophysics [11], geomorphology, particle physics [3] etc.

Discrete Morse theory was stated by Forman [2]. Lewiner [6] was the first who presented
technique for computation of a discrete gradient field that agrees with the flow behavior
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of a scalar function. Sousbie [11], Robins et al. [10] presented faster algorithms using various
techniques. Gyulassy et al. [3] proposed a probabilistic approach. Edelsbrunner et al. [1]
introduced a topological persistence and persistent pairs cancellation concepts.

In this parer, we show the result of a Morse-Smale complex construction and simplification
for a bipolar field (obtained by processing of SDO/HMI data).

3. Preliminaries
Morse theory concerned on the behavior of the smooth scalar functions defined over generic
manifolds. At the first, we present some basic definitions, and then extend theory for discrete
domains.

3.1. Morse Theory
Consider a smooth function f : M→ R defined over two-dimensional manifold M.

Denote as ∇f the gradient of f . A point p ∈M is critical if ∇f(p) = 0, and it is degenerate
if a determinant of Hessian matrix Hf (p) = d2f/dxdy(p) takes zero value.

The function f is a Morse function if all its critical points are non-degenerate. In addition,
require that all values of f in critical points are different. For such a function, Morse Lemma
states [8] that there exists a chart (x, y) in a neighbourhood U of critical point p such that
x(p) = 0, y(p) = 0 and f(x, y) = f(p) ± x2 ± y2. The number of minus signs in this equation
gives an index (order) of critical point. One can think about index as the number of independent
downward directions. In 2D case, critical points of index 0 are called minima, index 1 – saddles,
index 2 – maxima.

Integral line is a curve which is tangent to gradient field in every point. Precisely, it is a curve
l(t) ⊂ R2 such that dl(t)/dt = ∇f . Origin of integral line is lim

t→−∞
l(t) and destination

is lim
t→+∞

l(t). Actually, each integral line has origin and destination in critical points.

Integral lines of f have the following properties:

(i) every point p ∈M belongs to exactly one integral line,

(ii) every two integral lines are fully distinct (but may have the same origin or destination).

From (i) and (ii) follows that the domain of f can be decomposed into regions containing
integral lines with common origin or destination. Ascending (descending) manifold is a set
of points whose integral lines have common origin (destination). Decomposition of M into
ascending (descending) manifolds is called a Morse complex. A critical point with index i has
an i-dimensional descending manifold and 2 − i-dimensional ascending manifold. 1-manifolds
of a Morse-Smale complex are called arcs.

Morse function f is called Morse-Smale if intersection of its ascending and descending
manifolds are transversal. We obtain a Morse-Smale complex by intersection of ascending and
descending manifolds.

3.2. Discrete Morse Theory
Supposing the magnetic field intensity were a Morse function, which critical points correspond
to the topological features of the field and arcs define neighbourhood relation between critical
points.

Regrettably, a magnetogram data is given over discrete domain and do not comply with
criteria of Morse function. Thus, we need to give a generalization of Morse theory for functions
defined over discrete space.

For details of such a generalization, namely discrete Morse theory, we refer to Forman [2].
How to define correctly a discrete Morse function by given magnetogram values and how

to construct a gradient field are highly intricate issues. We use approach stated by Sousbie
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Figure 1. Initial 400 × 400 SDO/HMI
magnetogram.

Figure 2. Intermediate result of simplifi-
cation. Red are maxima, blue are minima,
green are saddles. There are 76 maxima,
44 minima, and 117 saddle points (the Eu-
ler characteristic χ = 3).

Figure 3. Intermediate result of simplifica-
tion. There are 29 maxima, 14 minima, and
37 saddle points (χ = 6).

Figure 4. DMC obtained by persistence
simplification. Remaining critical points are
correspondent to the key topological features.
There are 23 maxima, 11 minima, and 29
saddle points (χ = 5).

in [11] implemented for 2D grid (initially, the proposed algorithms were designed for simplicial
complex). Some details of implementation we get from Robins et al [10].
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3.3. Persistence Simplification
Only a small part of identified topological features (correspondent to critical points of
the computed discrete Morse complex) are seemed significant, most of them appear to be
noise. the way to eliminate minor topological features is the persistent pair identification and
cancellation.

For each arc (σ0, σ1) of the discrete Morse complex (DMC) we associate a number |f(σ0)−
f(σ1)|, which is called persistence of arc.

Each step of simplification consists of cancellation of pair “maximum – saddle” or “minimum
– saddle” connected by arc with the smallest persistence value. After cancellation performed,
we recover arcs of DMC incoming the removed vertices.

For more detailed discussion about topological persistence and its applications to discrete
Morse theory, we refer to Edelsbrunner et al [1].

4. Results
We have applied a simplification algorithm on the SDO/HMI magnetogram data. We use 2-
periodical boundary conditions obtained by reflection and gluing initial rectangle borders in torus
T2. Process of the Morse-Smale simplification presented on Figures 1 – 4. Initial MS-complex
contains 5503 maxima, 9330 minima, and 14799 saddle points. MS-complex after editing (Fig.
4) contains 23 maxima, 11 minima, and 29 saddle points.

Our implementation of this algorithm is in C++. Pictures are generated using OpenCV
library [9].

5. Future work
Firstly, we are intended to obtain a sequence of edited fields for Active Regions corresponding
to flares. After that, we want to look at the dependence of general predictors of field complexity
[5] on the simplification level. An other problem is comparison of MS-complexes constructed by
the bipolar field with a scalar energy field B2/2.
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