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Abstract. We describe phenomenon of X-ray Novae in a model of non-stationary accretion
α-disk with account for irradiation and vertical convection in outer disk region. We extended
the commonly used disk vertical structure model by adding viscous turbulent energy generation
in mixing length theory. This model was used to simulate both optical and X-ray light curves
of the 1975 outburst of X-ray Nova A0620-00.

1. Introduction
X-ray novae are close binary systems with relativistic star (a black hole or a neutron star)
and a low-mass Roche-lobe-filling star (see reviews [1], [2]). We will consider systems that
contains a black hole and a low-mass main-sequence star and show the so-called fast rise and
exponential decay (FRED) X-ray light curves. Light curves of such systems can be described
by non-stationary evolution of a standard accretion disk ([3], [4]). Analytical solutions of this
problem are presented in [5], [6] and [7]. These solutions cannot take into account some of the
features of accretion disk structure.

First, outer parts of the disk could be cooler than 104 K and have a zone of partially ionized
hydrogen where opacity law differs from that in a hotter region of the disk. Second, vertical
convection appears in the zone of partially ionized hydrogen ([8], [9]). Third, the outer part of
the disk with temperature 104 K could be irradiated by X-rays from the inner part of the disk
that has a temperature of 105 ÷ 106 K.

Here we describe a numerical model that includes these features and apply it to both X-ray
and optical light curves of 1975 outburst of X-ray nova A0620–00. In this work we discuss only
the behaviour of the descending branches of the light curves.

2. Viscous evolution of accretion disk
Let us write the continuity equation for a geometry thin axially symmetric accretion disk:

∂Σ0

∂t
= −1

r

∂

∂r
(Σ0vrr), (1)

where Σ0 =
∫∞
−∞ ρdz is the surface density of the disk at radius r, z is the axial coordinate, vr

is the radial velocity of the accreting matter.
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We assume that the angular momentum is taken away only from outer radius of the disk, in
other words, there is no wind, and tidal torque from the secondary star is efficient only for the
outer edge of the disk [10]. Then equation of the angular momentum transfer reads

Σ0vr
∂(ωr2)

∂r
= − 1

2π

1

r

∂F

∂r
, (2)

where ω =
√
GMx/r3 is the angular velocity of accreting matter, G is the gravitation constant,

Mx is the mass of the black hole, F = 2πr2 ×
∫∞
−∞ αPdz is the viscous torque in standard

accretion disk [4], α is the turbulent viscous parameter, P is the pressure.
Combination of equations (1) and (2) yields the diffusion equation:

∂Σ0

∂t
=

1

4π

(GMx)2

h3
∂2F

∂h2
, (3)

where h =
√
ωr2 is the specific Keplerian angular momentum.

The last equation is a second order differential equation, so we need two boundary conditions
to solve it. The first boundary condition is for the inner edge of the disk where matter falls
down on the black hole almost without producing viscous torques:

Fin = 0. (4)

The second boundary condition is due to the assumption that during an outburst the mass
transfer rate from the secondary star to the disk is much smaller than accretion rate on the
black hole:

∂F

∂h

∣∣∣∣
out

= 0. (5)

Equation (3) with boundary conditions (4, 5) composes a system of equations for two unknown
functions: F (t, h) and Σ0(t, h). In the next section we will find relations between these functions
by solving the vertical structure equations.

3. Vertical structure equations
Equations of the vertical structure of the disk are similar to equations of stellar radial structure.
Let us write and discuss them one by one.

3.1. Hydrostatic equilibrium
We simulate the disk on timescales much larger the free fall time and therefore we can assume
the hydrostatic equilibrium:

dP

dz
= ρgz, (6)

where ρ is the density, gz ' ω2z is the free fall acceleration.

3.2. Surface density
The second equation comes from surface density definition:

dΣ

dz
= ρ. (7)
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3.3. Energy generation
There are two sources of energy in the outer region of the disk: viscous heating αP and
thermalization of X-ray photons coming from the inner region of the disk εx:

dQ

dz
= αP + εx. (8)

We used the same approach as in paper [11] to calculate εx.

3.4. Energy transfer
When the surface temperature of the disk is higher than 104 K all the energy is transfered by
radiation. But if there is a vertical convection in the cold disk region then it could transfer part
of energy in the direction from the central plane to the disk surface.

dT

dz
=
gzρT

P
∇, (9)

where ∇ ≡ d log T/d logP is the actual logarithmic gradient. In this work we describe the
vertical convection by mixing length model in accretion disks from paper [12].

3.5. Equation of state
We use equation of state of perfect gas to link thermodynamical quantities:

P =
ρRT
µ(ρ, T )

, (10)

whereR is the gas constant, µ(ρ, T ) is the molecular weight of the gas. We assume that accretion
matter is a mixture of neutral hydrogen, ionized hydrogen and neutral impurity, so molecular
weight µ depends on thermodynamical state of the gas. In addition we assume that this mixture
has solar composition [13].

4. Simulation of the light curves
Solution of the vertical structure equations (6 — 10) provides us with relation between the
surface density Σ0 and the viscous torque F . One can use this relation to solve equation (3)
and find temporal evolution of the disk and, as a result, the light curves of the outburst.

We assuming the initial condition in the form:

F (h) =
2

π
(hout − hin)Ṁ0 × sin

(
π

2

h− hin
hout − hin

)
, (11)

where Ṁ0 is the initial accretion rate on the black hole, hin and hout are specific angular momenta
at the inner and outer edges of the disk, respectively. Here the initial accretion rate Ṁ0 is the
accretion rate at the moment of the peak of X-ray luminosity.

For our simulation of light curves of A0620–00 we used parameters of the binary system
from [14] and [15]: mass of the secondary star is 0.4 solar masses, mass of the black hole Mx is
6.6 solar masses, orbital inclination is 51◦, orbital period is 0.323 days, the Kerr parameter of
the black hole is 0.2.

Results of our simulations are shown in Fig. 1 and Fig. 2. It is seen that the X-ray light
curve (Fig. 2) has the secondary peak. We explains it with an additional mass transfer from the
secondary star to the disk 43 days after the X-ray luminosity maximum. We need to add 30%
of the disk mass to it to explain the observed feature.

The late part of the model optical light curve (Fig. 1) lies lower than observations. It could
be explained by adding some light from the secondary star. The star could be irradiated by the
X-ray photons from the accretion disk and heated. The dashed line on Fig. 1 shows the light
curve for the disk with the star that has a constant luminosity.
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Figure 1. Optical light curve of X-ray nova
A0620–00. Dots indicates observations [16]. The
solid line shows the model with flux from the disk,
the dashed line shows the model with optical star
with magnitude m = 13m.
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Figure 2. Soft X-ray (3 ÷ 6 keV) light curve
of X-ray nova A0620–00. Dots indicates observa-
tions [17], the solid line indicates model.

5. Results
We showed that the standard model of disk accretion can explain behaviour of light curves of
X-ray nova both in the optical and X-rays. In the context of this theory we found that during
1975 outburst of X-ray nova A0620–00 the α parameter of the disk was approximately 0.5. We
also found that the distance to the source in our model should be somewhat smaller than in [14]
and is approximately 0.85 kpc.
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